Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(6): 2232-2250, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36891818

RESUMEN

Silicon (Si) is important for stable and high yields in rice (Oryza sativa), a typical Si hyperaccumulator. The high Si accumulation is achieved by the cooperation of 2 Si transporters, LOW SILICON 1 (OsLsi1) and OsLsi2, which are polarly localized in cells of the root exodermis and endodermis. However, the mechanism underlying their polar localization is unknown. Here, we identified amino acid residues critical for the polar localization of OsLsi1. Deletion of both N- and C-terminal regions resulted in the loss of its polar localization. Furthermore, the deletion of the C-terminus inhibited its trafficking from the endoplasmic reticulum to the plasma membrane. Detailed site-directed mutagenesis analysis showed that Ile18 at the N-terminal region and Ile285 at the C-terminal region were essential for the polar localization of OsLsi1. Moreover, a cluster of positively charged residues at the C-terminal region is also required for polar localization. Phosphorylation and Lys modifications of OsLsi1 are unlikely to be involved in its polar localization. Finally, we showed that the polar localization of OsLsi1 is required for the efficient uptake of Si. Our study not only identified critical residues required for the polar localization of OsLsi1, but also provided experimental evidence for the importance of transporter polarity for efficient nutrient uptake.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Silicio/metabolismo , Silicio/farmacología , Isoleucina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
2.
Plant Physiol ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761402

RESUMEN

Rice (Oryza sativa) as a staple food is a potential intake source of antimony (Sb), a toxic metalloid. However, how rice accumulates this element is still poorly understood. Here, we investigated tissue-specific deposition, speciation, and transport of Sb in rice. We found that Sb(III) is the preferential form of Sb uptake in rice, but most Sb accumulates in the roots, resulting in a very low root-to-shoot translocation (less than 2%). Analysis of Sb deposition with laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) showed that most Sb deposits at the root exodermis. Furthermore, we found that Sb is mainly present as Sb(III) in the root cell sap after uptake. Further characterization showed that Sb(III) uptake is mediated by Low silicon rice 1 (Lsi1), a Si permeable transporter. Lsi1 showed transport activity for Sb(III) rather than Sb(V) in yeast (Saccharomyces cerevisiae). Knockout of Lsi1 resulted in a significant decrease in Sb accumulation in both roots and shoots. Sb concentration in the root cell sap of two independent lsi1 mutants decreased to less than 3% of that in wild-type rice, indicating that Lsi1 is a major transporter for Sb(III) uptake. Knockout of Lsi1 also enhanced rice tolerance to Sb toxicity. However, knockout of Si efflux transporter genes, including Lsi2 and Lsi3, did not affect Sb accumulation. Taken together, our results showed that Sb(III) is taken up by Lsi1 localized at the root exodermis and is deposited at this cell layer due to lack of Sb efflux transporters in rice.

3.
New Phytol ; 241(4): 1708-1719, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084009

RESUMEN

To play essential roles of manganese (Mn) in plant growth and development, it needs to be transported to different organs and tissues after uptake. However, the molecular mechanisms underlying Mn distribution between different tissues are poorly understood. We functionally characterized a member of rice natural resistance-associated macrophage protein (NRAMP) family, OsNramp5 in terms of its tissue specificity of gene expression, cell-specificity of protein localization, phenotypic analysis of leaf growth and response to Mn fluctuations. OsNramp5 is highly expressed in the leaf sheath. Immunostaining revealed that OsNramp5 is polarly localized at the proximal side of xylem parenchyma cells of the leaf sheath. Both the gene expression and protein abundance of OsNramp5 are unaffected by different Mn concentrations. Knockout of OsNramp5 decreased the distribution of Mn to the leaf sheath, but increased the distribution to the leaf blade at both low and high Mn supplies, resulting in reduced growth of leaf sheath. Furthermore, expression of OsNramp5 under the control of root-specific promoter in osnramp5 mutant complemented Mn uptake, but could not complement Mn distribution to the leaf sheath. These results indicate that OsNramp5 expressed in the leaf sheath plays an important role in unloading Mn from the xylem for the local distribution in rice.


Asunto(s)
Oryza , Oryza/metabolismo , Manganeso/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo
4.
New Phytol ; 242(6): 2620-2634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600023

RESUMEN

Iron (Fe) needs to be delivered to different organs and tissues of above-ground parts for playing its multiple physiological functions once it is taken up by the roots. However, the mechanisms underlying Fe distribution are poorly understood. We functionally characterized OsOPT7, a member of oligo peptide transporter family in terms of expression patterns, localization, transport activity and phenotypic analysis of knockdown lines. OsOPT7 was highly expressed in the nodes, especially in the uppermost node I, and its expression was upregulated by Fe-deficiency. OsOPT7 transports ferrous iron into the cells coupled with proton. Immunostaining revealed that OsOPT7 is mainly localized in the xylem parenchyma cells of the enlarged vascular bundles in the nodes and vascular tissues in the leaves. Knockdown of OsOPT7 did not affect the Fe uptake, but altered Fe distribution; less Fe was distributed to the new leaf, upper nodes and developing panicle, but more Fe was distributed to the old leaves. Furthermore, knockdown of OsOPT7 also resulted in less Fe distribution to the leaf sheath, but more Fe to the leaf blade. Taken together, OsOPT7 is involved in the xylem unloading of Fe for both long-distance distribution to the developing organs and local distribution within the leaf in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Hierro , Oryza , Proteínas de Plantas , Xilema , Xilema/metabolismo , Oryza/genética , Oryza/metabolismo , Hierro/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Hojas de la Planta/metabolismo
5.
J Integr Plant Biol ; 66(2): 252-264, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38018375

RESUMEN

Rice is a staple food for half of the world's population, but it is a poor dietary source of calcium (Ca) due to the low concentration. It is an important issue to boost Ca concentration in this grain to improve Ca deficiency risk, but the mechanisms underlying Ca accumulation are poorly understood. Here, we obtained a rice (Oryza sativa) mutant with high shoot Ca accumulation. The mutant exhibited 26%-53% higher Ca in shoots than did wild-type rice (WT) at different Ca supplies. Ca concentration in the xylem sap was 36% higher in the mutant than in the WT. There was no difference in agronomic traits between the WT and mutant, but the mutant showed 25% higher Ca in the polished grain compared with the WT. Map-based cloning combined with a complementation test revealed that the mutant phenotype was caused by an 18-bp deletion of a gene, OsK5.2, belonging to the Shaker-like K+ channel family. OsK5.2 was highly expressed in the mature region of the roots and its expression in the roots was not affected by Ca levels, but upregulated by low K. Immunostaining showed that OsK5.2 was mainly expressed in the pericycle of the roots. Taken together, our results revealed a novel role for OsK5.2 in Ca translocation in rice, and will be a good target for Ca biofortification in rice.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Calcio/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo
6.
Plant J ; 111(4): 923-935, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35791277

RESUMEN

Glycosyltransferases (GTs) form a large family in plants and are important enzymes for the synthesis of various polysaccharides, but only a few members have been functionally characterized. Here, through mutant screening with gene mapping, we found that an Oryza sativa (rice) mutant with a short-root phenotype was caused by a frame-shift mutation of a gene (OsGT14;1) belonging to the glycosyltransferase gene family 14. Further analysis indicated that the mutant also had a brittle culm and produced lower grain yield compared with wild-type rice, but the roots showed similar root structure and function in terms of the uptake of mineral nutrients. OsGT14;1 was broadly expressed in all organs throughout the entire growth period, with a relatively high expression in the roots, stems, node I and husk. Furthermore, OsGT14;1 was expressed in all tissues of these organs. Subcellular observation revealed that OsGT14;1 encoded a Golgi-localized protein. Mutation of OsGT14;1 resulted in decreased cellulose content and increased hemicellulose, but did not alter pectin in the cell wall of roots and shoots. The knockout of OsGT14;1 did not affect the tolerance to toxic mineral elements, including Al, As, Cd and salt stress, but did increase the sensitivity to low pH. Taken together, OsGT14;1 located at the Golgi is required for growth of both roots and shoots in rice through affecting cellulose synthesis.


Asunto(s)
Oryza , Celulosa/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Minerales/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo
7.
Plant J ; 110(6): 1564-1577, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35365951

RESUMEN

The essential micronutrient manganese (Mn) in plants regulates multiple biological processes including photosynthesis and oxidative stress. Some Natural Resistance-Associated Macrophage Proteins (NRAMPs) have been reported to play critical roles in Mn uptake and reutilization in low Mn conditions. NRAMP6 was demonstrated to regulate cadmium tolerance and iron utilization in Arabidopsis. Nevertheless, it is unclear whether NRAMP6 plays a role in Mn nutrition. Here, we report that NRAMP6 cooperates with NRAMP1 in Mn utilization. Mutation of NRAMP6 in nramp1 but not in a wild-type background reduces root growth and Mn translocation from the roots to shoots under Mn deficient conditions. Grafting experiments revealed that NRAMP6 expression in both the roots and shoots is required for root growth and Mn translocation under Mn deficiency. We also showed that NRAMP1 could replace NRAMP6 to sustain root growth under Mn deficiency, but not vice versa. Mn deficiency does not affect the transcript level of NRAMP6, but is able to increase and decrease the protein accumulation of NRAMP6 in roots and shoots, respectively. Furthermore, NRAMP6 can be localized to both the plasma membrane and endomembranes including the endoplasmic reticulum, and Mn deficiency enhances the localization of NRAMP6 to the plasma membrane in Arabidopsis plants. NRAMP6 could rescue the defective growth of the yeast mutant Δsmf2, which is deficient in endomembrane Mn transport. Our results reveal the important role of NRAMP6 in Mn nutrition and in the long-distance signaling between the roots and shoots under Mn deficient conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fenómenos Biológicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Manganeso/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas/metabolismo
8.
Plant Physiol ; 188(3): 1649-1664, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34893892

RESUMEN

Uptake of boron (B) in rice (Oryza sativa) is mediated by the Low silicon rice 1 (OsLsi1) channel, belonging to the NOD26-like intrinsic protein III subgroup, and the efflux transporter B transporter 1 (OsBOR1). However, it is unknown how these transporters cooperate for B uptake and how they are regulated in response to B fluctuations. Here, we examined the response of these two transporters to environmental B changes at the transcriptional and posttranslational level. OsBOR1 showed polar localization at the proximal side of both the exodermis and endodermis of mature root region, forming an efficient uptake system with OsLsi1 polarly localized at the distal side of the same cell layers. Expression of OsBOR1 and OsLsi1 was unaffected by B deficiency and excess. However, although OsLsi1 protein did not respond to high B at the protein level, OsBOR1 was degraded in response to high B within hours, which was accompanied with a significant decrease of total B uptake. The high B-induced degradation of OsBOR1 was inhibited in the presence of MG-132, a proteasome inhibitor, without disturbance of the polar localization. In contrast, neither the high B-induced degradation of OsBOR1 nor its polarity was affected by induced expression of dominant-negative mutated dynamin-related protein 1A (OsDRP1AK47A) or knockout of the mu subunit (AP2M) of adaptor protein-2 complex, suggesting that clathrin-mediated endocytosis is not involved in OsBOR1 degradation and polar localization. These results indicate that, in contrast to Arabidopsis thaliana, rice has a distinct regulatory mechanism for B uptake through clathrin-independent degradation of OsBOR1 in response to high B.


Asunto(s)
Boro/metabolismo , Clatrina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Oryza/metabolismo , Raíces de Plantas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Clatrina/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Variación Genética , Genotipo , Proteínas de Transporte de Membrana/genética , Mutación , Raíces de Plantas/genética , Plantas Modificadas Genéticamente
9.
J Exp Bot ; 74(21): 6790-6803, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37610886

RESUMEN

It is often expected that Zn decreases Cd accumulation in plants due to competition for the same transporters. Here, we found that increasing Zn supply markedly increased the root-to-shoot translocation of Cd in rice. RNA sequencing showed that high Zn up-regulated expression of genes involved in glutathione biosynthesis and metabolism and the Zn/Cd transporter gene OsHMA2, but down-regulated expression of genes related to Zn uptake. Knockout of the iron or Zn transporter genes OsIRT1, OsIRT2, or OsZIP9 did not affect the Zn promotional effect on Cd translocation. Knockout of the manganese/Cd transporter gene OsNRAMP5 greatly reduced Cd uptake but did not affect the Zn promotional effect. Variation in the tonoplast transporter gene OsHMA3 affected Cd translocation but did not change the Zn promotional effect. Knockout of the Zn/Cd transporter gene OsHMA2 not only decreased Cd and Zn translocation, but also abolished the Zn promotional effect. Increased expression of OsHMA2 under high Zn conditions supports the hypothesis that this transporter participates in the promotional effect of Zn on Cd translocation. The results also show that OsIRT1, OsIRT2, and OsZIP9 made only small contributions to Cd uptake under low Zn conditions but not under high Zn conditions, whereas the dominant role of OsNRAMP5 in Cd uptake diminished under low Zn conditions.


Asunto(s)
Cadmio , Oryza , Cadmio/metabolismo , Zinc/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Translocación Genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
10.
Nature ; 541(7635): 92-95, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28002408

RESUMEN

Phosphorus is an important nutrient for crop productivity. More than 60% of the total phosphorus in cereal crops is finally allocated into the grains and is therefore removed at harvest. This removal accounts for 85% of the phosphorus fertilizers applied to the field each year. However, because humans and non-ruminants such as poultry, swine and fish cannot digest phytate, the major form of phosphorus in the grains, the excreted phosphorus causes eutrophication of waterways. A reduction in phosphorus accumulation in the grain would contribute to sustainable and environmentally friendly agriculture. Here we describe a rice transporter, SULTR-like phosphorus distribution transporter (SPDT), that controls the allocation of phosphorus to the grain. SPDT is expressed in the xylem region of both enlarged- and diffuse-vascular bundles of the nodes, and encodes a plasma-membrane-localized transporter for phosphorus. Knockout of this gene in rice (Oryza sativa) altered the distribution of phosphorus, with decreased phosphorus in the grains but increased levels in the leaves. Total phosphorus and phytate in the brown de-husked rice were 20-30% lower in the knockout lines, whereas yield, seed germination and seedling vigour were not affected. These results indicate that SPDT functions in the rice node as a switch to allocate phosphorus preferentially to the grains. This finding provides a potential strategy to reduce the removal of phosphorus from the field and lower the risk of eutrophication of waterways.


Asunto(s)
Agricultura/métodos , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/metabolismo , Oryza/anatomía & histología , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Animales , Transporte Biológico , Grano Comestible/metabolismo , Eutrofización , Fertilizantes , Técnicas de Inactivación de Genes , Germinación , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Especificidad de Órganos , Oryza/genética , Oryza/crecimiento & desarrollo , Ácido Fítico/metabolismo , Células Vegetales/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantones/crecimiento & desarrollo , Xilema/metabolismo
11.
J Integr Plant Biol ; 65(4): 934-949, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36515424

RESUMEN

Cell wall is the first physical barrier to aluminum (Al) toxicity. Modification of cell wall properties to change its binding capacity to Al is one of the major strategies for plant Al resistance; nevertheless, how it is regulated in rice remains largely unknown. In this study, we show that exogenous application of putrescines (Put) could significantly restore the Al resistance of art1, a rice mutant lacking the central regulator Al RESISTANCE TRANSCRIPTION FACTOR 1 (ART1), and reduce its Al accumulation particularly in the cell wall of root tips. Based on RNA-sequencing, yeast-one-hybrid and electrophoresis mobility shift assays, we identified an R2R3 MYB transcription factor OsMYB30 as the novel target in both ART1-dependent and Put-promoted Al resistance. Furthermore, transient dual-luciferase assay showed that ART1 directly inhibited the expression of OsMYB30, and in turn repressed Os4CL5-dependent 4-coumaric acid accumulation, hence reducing the Al-binding capacity of cell wall and enhancing Al resistance. Additionally, Put repressed OsMYB30 expression by eliminating Al-induced H2 O2 accumulation, while exogenous H2 O2 promoted OsMYB30 expression. We concluded that ART1 confers Put-promoted Al resistance via repression of OsMYB30-regulated modification of cell wall properties in rice.


Asunto(s)
Oryza , Oryza/genética , Oryza/metabolismo , Aluminio/toxicidad , Putrescina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Raíces de Plantas/metabolismo
12.
Plant J ; 105(3): 786-799, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33169459

RESUMEN

Tiller number is one of the most important agronomic traits that determine rice (Oryza sativa) yield. Active growth of tiller bud (TB) requires high amount of mineral nutrients; however, the mechanism underlying the distribution of mineral nutrients to TB with low transpiration is unknown. Here, we found that the distribution of Zn to TB is mediated by OsZIP4, one of the ZIP (ZRT, IRT-like protein) family members. The expression of OsZIP4 was highly detected in TB and nodes, and was induced by Zn deficiency. Immunostaining analysis revealed that OsZIP4 was mainly expressed in phloem of diffuse vascular bundles in the nodes and the axillary meristem. The mutation of OsZIP4 did not affect the total Zn uptake, but altered Zn distribution; less Zn was delivered to TB and new leaf, but more Zn was retained in the basal stems at the vegetative growth stage. Bioimaging analysis showed that the mutant aberrantly accumulated Zn in enlarged and transit vascular bundles of the basal node, whereas in wild-type high accumulation of Zn was observed in the meristem part. At the reproductive stage, mutation of OsZIP4 resulted in delayed panicle development, which is associated with decreased Zn distribution to the panicles. Collectively, OsZIP4 is involved in transporting Zn to the phloem of diffuse vascular bundles in the nodes for subsequent distribution to TBs and other developing tissues. It also plays a role in transporting Zn to meristem cells in the TBs.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Zinc/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/crecimiento & desarrollo , Fenotipo , Floema/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/crecimiento & desarrollo , Distribución Tisular , Zinc/farmacocinética , Isótopos de Zinc/farmacocinética
13.
Plant Cell Physiol ; 63(5): 699-712, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35277719

RESUMEN

Silicon (Si) is an important nutrient required for sustainable and high production of rice and its uptake is mediated by a pair of influx (OsLsi1)-efflux (OsLsi2) transporters showing polar localization. However, the mechanisms underlying their polarity are unknown. Here, we revealed that the polarity of the Si transporters depends on cell types. The polar localization of both OsLsi1 and OsLsi2 was not altered by Si supply, but their protein abundance was reduced. Double immunostaining showed that localization of OsLsi1 and OsLsi2 was separated at the edge of the lateral polar domain by Casparian strips in the endodermis, whereas they were slightly overlapped at the transversal side of the exodermis. When OsLsi1 was ectopically expressed in the shoots, it showed polar localization at the xylem parenchyma cells of the basal node and leaf sheath, but not at the phloem companion cells. Ectopic expression of non-polar Si transporters, barley HvLsi2 and maize ZmLsi2 in rice, resulted in their polar localization at the proximal side. The polar localization of OsLsi1 and OsLsi2 was not altered by inhibition of clathrin-mediated endocytosis (CME) by dominant-negative induction of dynamin-related protein1A and knockout of mu subunit of adaptor protein 2 complex, although the knockout mutants of OsAP2M gene showed dwarf phenotype. These results indicate that CME is not required for the polar localization of Si transporters. Taken together, our results indicate that CME-independent machinery controls the polar localization of Si transporters in exodermis, endodermis of root cells and xylem parenchyma cells.


Asunto(s)
Oryza , Endocitosis , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Silicio/metabolismo
14.
New Phytol ; 234(1): 197-208, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35020209

RESUMEN

Rice is able to accumulate high concentrations of silicon (Si) in the shoots, and this ability is required for the mitigation of abiotic and biotic stresses. Although transporters for Si uptake have been identified, a transporter for the xylem loading of Si has not been found. We functionally characterized a Si transporter, OsLsi3, in terms of tissue-specific localization, knockout line phenotype and mathematic simulation. OsLsi3 was shown to be an efflux Si transporter. OsLsi3 was mainly expressed in the mature root region, and its expression was downregulated by Si. Immunostaining with a specific antibody showed that OsLsi3 was localized to the pericycle in the roots, without polarity. However, when it was expressed under the control of the OsLsi2 promoter, OsLsi3 became polarly localized to the proximal side of both the exodermis and endodermis. Knockout of this gene resulted in decreased Si uptake and concentration in the xylem sap under low Si supply, but not under high Si supply. Mathematical modeling showed that localization of OsLsi3 to the pericycle accounts for c. 30% of the total Si loading to the xylem under low Si concentrations. In summary, OsLsi3 was involved in the xylem loading of Si in rice roots, which is required for the efficient root-to-shoot translocation of Si.


Asunto(s)
Oryza , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Silicio/metabolismo , Xilema/metabolismo
15.
New Phytol ; 234(4): 1249-1261, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35218012

RESUMEN

Grains are the major sink of phosphorus (P) in cereal crops, accounting for 60-85% of total plant P, but the mechanisms underlying P loading into the grains are poorly understood. We functionally characterized a transporter gene required for the distribution of P to the grains in barley (Hordeum vulgare), HvSPDT (SULTR-like phosphorus distribution transporter). HvSPDT encoded a plasma membrane-localized Pi/H+ cotransporter. It was mainly expressed in the nodes at both the vegetative and reproductive stages. Furthermore, its expression was induced by inorganic phosphate (Pi) deficiency. In the nodes, HvSPDT was expressed in both the xylem and phloem region of enlarged and diffuse vascular bundles. Knockout of HvSPDT decreased the distribution of P to new leaves, but increased the distribution to old leaves at the vegetative growth stage under low P supply. However, knockout of HvSPDT did not alter the redistribution of P from old to young organs. At the reproductive stage, knockout of HvSPDT significantly decreased P allocation to the grains, resulting in a considerable reduction in grain yield, especially under P-limited conditions. Our results indicate that node-based HvSPDT plays a crucial role in loading P into barley grains through preferentially distributing P from the xylem and further to the phloem.


Asunto(s)
Hordeum , Grano Comestible , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
New Phytol ; 236(3): 864-877, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35976788

RESUMEN

Plant stomata play an important role in CO2 uptake for photosynthesis and transpiration, but the mechanisms underlying stomatal opening and closing under changing environmental conditions are still not completely understood. Through large-scale genetic screening, we isolated an Arabidopsis mutant (closed stomata2 (cst2)) that is defective in stomatal opening. We cloned the causal gene (MGR1/CST2) and functionally characterized this gene. The mutant phenotype was caused by a mutation in a gene encoding an unknown protein with similarities to the human magnesium (Mg2+ ) efflux transporter ACDP/CNNM. MGR1/CST2 was localized to the tonoplast and showed transport activity for Mg2+ . This protein was constitutively and highly expressed in guard cells. Knockout of this gene resulted in stomatal closing, decreased photosynthesis and growth retardation, especially under high Mg2+ conditions, while overexpression of this gene increased stomatal opening and tolerance to high Mg2+ concentrations. Furthermore, guard cell-specific expression of MGR1/CST2 in the mutant partially restored its stomatal opening. Our results indicate that MGR1/CST2 expression in the leaf guard cells plays an important role in maintaining cytosolic Mg2+ concentrations through sequestering Mg2+ into vacuoles, which is required for stomatal opening, especially under high Mg2+ conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Humanos , Luz , Magnesio/metabolismo , Magnesio/farmacología , Mutación/genética , Estomas de Plantas/genética , Vacuolas/metabolismo
17.
Plant Cell ; 31(11): 2636-2648, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31484684

RESUMEN

In response to diverse environmental conditions, rice (Oryza sativa) roots have developed one Casparian strip (CS) at the exodermis and one CS at the endodermis. Here, we functionally characterized OsCASP1 (Casparian strip domain protein 1) in rice. OsCASP1 was mainly expressed in the root elongation zone, and the protein encoded was first localized to all sides of the plasma membrane of endodermal cells without CS, followed by the middle of the anticlinal side of endodermal cells with CS. Knockout of OsCASP1 resulted in a defect of CS formation at the endodermis and decreased growth under both soil and hydroponic conditions. Mineral analysis showed that the oscasp1 mutants accumulated more Ca, but less Mn, Zn, Fe, Cd, and As in the shoots compared with the wild type. The growth inhibition of the mutants was further aggravated by high Ca in growth medium. The polar localization of the Si transporter Low Si 1 at the distal side of the endodermis was not altered in the mutant, but the protein abundance was decreased, resulting in a substantial reduction in silicon uptake. These results indicated that OsCASP1 is required for CS formation at the endodermis and that the CS in rice plays an important role in root selective uptake of mineral elements, especially Ca and Si.


Asunto(s)
Transporte Biológico/fisiología , Caspasa 1/metabolismo , Pared Celular/metabolismo , Oryza/metabolismo , Caspasa 1/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/metabolismo , Minerales/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Análisis de Secuencia , Suelo
18.
Plant Cell Physiol ; 62(4): 600-609, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33325992

RESUMEN

Manganese (Mn) is an essential element for plant growth and development, but transporters required for Mn uptake have only been identified in a few plant species. Here, we functionally characterized a member of the natural resistance-associated macrophage proteins (Nramps) family, FeNramp5 in buckwheat (Fagopyrum esculentum Moench), which is known as a species well adapted to acidic soils. FeNramp5 was mainly expressed in the roots, and its expression was upregulated by the deficiency of Mn and Fe. Furthermore, spatial and tissue-specific expression analysis showed that FeNramp5 was expressed in all tissues of the basal root regions. FeNramp5-GFP protein was localized to the plasma membrane when transiently expressed in buckwheat leaf protoplast. FeNramp5 showed the transport activity for Mn2+ and Cd2+ but not for Fe2+ when expressed in yeast. Furthermore, the transport activity for Mn2+ was higher in yeast expressing FeNramp5 than in yeast expressing AtNramp1. FeNramp5 was also able to complement the phenotype of Arabidopsis atnramp1 mutant in terms of the growth and accumulation of Mn and Cd. The absolute expression level of AtNramp1 was comparable to that of FeNramp5 in the roots, but buckwheat accumulated higher Mn than Arabidopsis when grown under the same condition. Further analysis showed that at least motif B in FeNramp5 seems important for its high transport activity for Mn. These results indicate that FeNramp5 is a transporter for the uptake of Mn and Cd and its higher transport activity for Mn is probably associated with higher Mn accumulation in buckwheat.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Fagopyrum/metabolismo , Manganeso/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Metales/metabolismo , Mutación , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Protoplastos/metabolismo , Levaduras/metabolismo
19.
New Phytol ; 232(4): 1778-1792, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34392543

RESUMEN

Ammonium is a preferential nitrogen form for rice (Oryza sativa) grown in paddy field, but the molecular mechanisms for ammonium uptake have not been well understood. We functionally characterized three members belonging to ammonium transporter 1 (AMT1) and investigated their contributions to ammonium uptake. Spatial expression analysis showed that the upregulated expression of OsAMT1;1 and OsAMT1;2 and downregulated expression of OsAMT1;3 by ammonium were higher in the root mature region than in the root tips. All OsAMT1 members were polarly localized at the distal side of exodermis in the mature region of crown roots and lateral roots. Upon exposure to ammonium, localization of OsAMT1;1 and OsAMT1;2 was also observed in the endoplasmic reticulum, but their abundance in the plasma membrane was not changed. Single knockout of either gene did not affect ammonium uptake, but knockout of all three genes resulted in 95% reduction of ammonium uptake. However, the nitrogen uptake did not differ between the wild-type rice and triple mutants at high ammonium and nitrate supply. Our results indicate that three OsAMT1 members are cooperatively required for uptake of low ammonium in rice roots and that they undergo a distinct regulatory mechanism in response to ammonium.


Asunto(s)
Compuestos de Amonio , Proteínas de Transporte de Catión , Oryza , Compuestos de Amonio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
20.
New Phytol ; 230(3): 1049-1062, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33474769

RESUMEN

Iron (Fe) from rice grains is an important source of dietary intake; however, the molecular mechanisms responsible for loading of Fe to the grains are poorly understood. We functionally characterized a vacuolar iron transporter gene, OsVIT2 in terms of expression pattern, cellular localization, and mutant phenotypes. OsVIT2 was expressed in the parenchyma cell bridges of nodes, in the mestome sheath of leaf sheath and aleurone of the caryopsis. Mutation of OsVIT2 resulted in decreased Fe distribution to the leaf sheath, nodes, and aleurone, but increased Fe to the leaf blade and grains. Furthermore, Fe was heavily deposited in the parenchyma cell bridges, mestome sheath and aleurone in the wild-type rice, but this accumulation was decreased in the knockout lines. Conversely, heavier deposition of Fe was observed in the embryo and endosperm of the grains of knockout lines compared with the wild-type rice, resulting in increased Fe accumulation in the polished rice without yield penalty. These results indicate that OsVIT2 is involved in the distribution of Fe to the grains through sequestering Fe into vacuoles in mestome sheath, nodes, and aleurone layer and that knockout of this gene provides a potential way for Fe biofortification without yield penalty.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Oryza/metabolismo , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA