Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 722
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 505: 75-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37923186

RESUMEN

Congenital craniofacial abnormalities are congenital anomalies of variable expressivity and severity with a recognizable set of abnormalities, which are derived from five identifiable primordial structures. They can occur unilaterally or bilaterally and include various malformations such as cleft lip with/without palate, craniosynostosis, and craniofacial microsomia. To date, the molecular etiology of craniofacial abnormalities is largely unknown. Noncoding RNAs (ncRNAs), including microRNAs, long ncRNAs, circular RNAs and PIWI-interacting RNAs, function as major regulators of cellular epigenetic hallmarks via regulation of various molecular and cellular processes. Recently, aberrant expression of ncRNAs has been implicated in many diseases, including craniofacial abnormalities. Consequently, this review focuses on the role and mechanism of ncRNAs in regulating craniofacial development in the hope of providing clues to identify potential therapeutic targets.


Asunto(s)
Anomalías Craneofaciales , Craneosinostosis , MicroARNs , ARN Largo no Codificante , Humanos , ARN no Traducido/genética , MicroARNs/genética , Anomalías Craneofaciales/genética
2.
Gastroenterology ; 167(2): 343-356, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342194

RESUMEN

BACKGROUND & AIMS: Apoptosis generates plenty of membrane-bound nanovesicles, the apoptotic vesicles (apoVs), which show promise for biomedical applications. The liver serves as a significant organ for apoptotic material removal. Whether and how the liver metabolizes apoptotic vesicular products and contributes to liver health and disease is unrecognized. METHODS: apoVs were labeled and traced after intravenous infusion. Apoptosis-deficient mice by Fas mutant (Fasmut) and Caspase-3 knockout (Casp3-/-) were used with apoV replenishment to evaluate the physiological apoV function. Combinations of morphologic, biochemical, cellular, and molecular assays were applied to assess the liver while hepatocyte analysis was performed. Partial hepatectomy and acetaminophen liver failure models were established to investigate liver regeneration and disease recovery. RESULTS: We discovered that the liver is a major metabolic organ of circulatory apoVs, in which apoVs undergo endocytosis by hepatocytes via a sugar recognition system. Moreover, apoVs play an indispensable role to counteract hepatocellular injury and liver impairment in apoptosis-deficient mice upon replenishment. Surprisingly, apoVs form a chimeric organelle complex with the hepatocyte Golgi apparatus through the soluble N-ethylmaleimide-sensitive factor attachment protein receptor machinery, which preserves Golgi integrity, promotes microtubule acetylation by regulating α-tubulin N-acetyltransferase 1, and consequently facilitates hepatocyte cytokinesis for liver recovery. The assembly of the apoV-Golgi complex is further revealed to contribute to liver homeostasis, regeneration, and protection against acute liver failure. CONCLUSIONS: These findings establish a previously unrecognized functional and mechanistic framework that apoptosis through vesicular metabolism safeguards liver homeostasis and regeneration, which holds promise for hepatic disease therapeutics.


Asunto(s)
Apoptosis , Hepatocitos , Homeostasis , Regeneración Hepática , Hígado , Ratones Noqueados , Animales , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/metabolismo , Hígado/patología , Caspasa 3/metabolismo , Ratones , Hepatectomía , Modelos Animales de Enfermedad , Receptor fas/metabolismo , Receptor fas/genética , Aparato de Golgi/metabolismo , Endocitosis , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Ratones Endogámicos C57BL , Acetaminofén , Masculino
3.
Stem Cells ; 42(8): 720-735, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717187

RESUMEN

Hypoxic pulmonary hypertension (HPH) is characterized by progressive pulmonary vasoconstriction, vascular remodeling, and right ventricular hypertrophy, causing right heart failure. This study aimed to investigate the therapeutic effects of exosomes from Tibetan umbilical cord mesenchymal stem cells on HPH via the TGF-ß1/Smad2/3 pathway, comparing them with exosomes from Han Chinese individuals. An HPH rat model was established in vivo, and a hypoxia-induced injury in the rat pulmonary artery smooth muscle cells (rPASMCs) was simulated in vitro. Exosomes from human umbilical cord mesenchymal stem cells were administered to HPH model rats or added to cultured rPASMCs. The therapeutic effects of Tibetan-mesenchymal stem cell-derived exosomes (Tibetan-MSC-exo) and Han-mesenchymal stem cell-derived exosomes (Han-MSC-exo) on HPH were investigated through immunohistochemistry, western blotting, EdU, and Transwell assays. The results showed that Tibetan-MSC-exo significantly attenuated pulmonary vascular remodeling and right ventricular hypertrophy in HPH rats compared with Han-MSC-exo. Tibetan-MSC-exo demonstrated better inhibition of hypoxia-induced rPASMCs proliferation and migration. Transcriptome sequencing revealed upregulated genes (Nbl1, Id2, Smad6, and Ltbp1) related to the TGFß pathway. Nbl1 knockdown enhanced hypoxia-induced rPASMCs proliferation and migration, reversing Tibetan-MSC-exo-induced downregulation of TGFß1 and p-Smad2/3. Furthermore, TGFß1 overexpression hindered the therapeutic effects of Tibetan-MSC-exo and Han-MSC-exo on hypoxic injury. These findings suggest that Tibetan-MSC-exo favors HPH treatment better than Han-MSC-exo, possibly through the modulation of the TGFß1/Smad2/3 pathway via Nbl1.


Asunto(s)
Exosomas , Hipertensión Pulmonar , Hipoxia , Células Madre Mesenquimatosas , Remodelación Vascular , Animales , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Remodelación Vascular/fisiología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/terapia , Hipertensión Pulmonar/patología , Ratas , Hipoxia/metabolismo , Ratas Sprague-Dawley , Masculino , Tibet , Humanos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Factor de Crecimiento Transformador beta1/metabolismo , Proliferación Celular , Transducción de Señal , Modelos Animales de Enfermedad , Proteína Smad2/metabolismo
4.
Stem Cells ; 42(4): 329-345, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38153856

RESUMEN

Pulmonary hypertension (PH) is an intractable, severe, and progressive cardiopulmonary disease. Recent findings suggest that human umbilical cord mesenchymal stromal cells (HUCMSCs) and HUCMSC-derived exosomes (HUCMSC-Exos) possess potential therapeutic value for PH. However, whether they have beneficial effects on hypoxic pulmonary hypertension (HPH) is unclear. Exos are released into the extracellular environment by the fusion of intracellular multivesicular bodies with the cell membrane, and they play an important role in cellular communication. Exos ameliorate immune inflammation levels, alter macrophage phenotypes, regulate mitochondrial metabolic function, and inhibit pulmonary vascular remodeling, thereby improving PH. Macrophages are important sources of cytokines and other transmitters and can promote the release of cytokines, vasoactive molecules, and reactive oxygen species, all of which are associated with pulmonary vascular remodeling. Therefore, the aim of this study was to investigate whether HUCMSC-Exos could improve the lung inflammatory microenvironment and inhibit pulmonary vascular remodeling by targeting macrophages and identifying the underlying mechanisms. The results showed that HUCMSC-Exos promoted M2 macrophage polarization, decreased pro-inflammatory factors, increased IL-10 levels, and inhibited IL-33/ST2 axis expression, thereby inhibiting hypoxia-induced proliferation of pulmonary artery smooth muscle cells and ameliorating HPH.


Asunto(s)
Exosomas , Hipertensión Pulmonar , Células Madre Mesenquimatosas , Hipertensión Arterial Pulmonar , Humanos , Ratones , Animales , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/terapia , Hipertensión Pulmonar/metabolismo , Exosomas/metabolismo , Remodelación Vascular , Cordón Umbilical/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Células Madre Mesenquimatosas/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 44(1): 202-217, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37942607

RESUMEN

BACKGROUND: Macrophages have versatile roles in atherosclerosis. SHP2 (Src homology 2 containing protein tyrosine phosphatase 2) has been demonstrated to play a critical role in regulating macrophage activation. However, the mechanism of SHP2 regulation of macrophage function in an atherosclerotic microenvironment remains unknown. METHODS: APOE (apolipoprotein E) or LDLR (low-density lipoprotein receptor) null mice treated with SHP099 were fed a Western diet for 8 weeks, while Shp2MKO:ApoE-/- or Shp2MKO:Ldlr-/- mice and exo-AAV8-SHP2E76K/ApoE-/- mice were fed a Western diet for 12 weeks. In vitro, levels of proinflammatory factors and phagocytic function were then studied in mouse peritoneal macrophages. RNA sequencing was used to identify PPARγ (peroxisome proliferative activated receptor γ) as the key downstream molecule. A PPARγ agonist was used to rescue the phenotypes observed in SHP2-deleted mice. RESULTS: Pharmacological inhibition and selective deletion in macrophages of SHP2 aggravated atherosclerosis in APOE and LDLR null mice with increased plaque macrophages and apoptotic cells. In vitro, SHP2 deficiency in APOE and LDLR null macrophages enhanced proinflammatory polarization and its efferocytosis was dramatically impaired. Conversely, the expression of gain-of-function mutation of SHP2 in mouse macrophages reduced atherosclerosis. The SHP2 agonist lovastatin repressesed macrophage inflammatory activation and enhanced efferocytosis. Mechanistically, RNA sequencing analysis identified PPARγ as a key downstream transcription factor. PPARγ was decreased in macrophages upon SHP2 deletion and inhibition. Importantly, PPARγ agonist decreased atherosclerosis in SHP2 knockout mice, restored efferocytotic defects, and reduced inflammatory activation in SHP2 deleted macrophages. PPARγ was decreased by the ubiquitin-mediated degradation upon SHP2 inhibition or deletion. Finally, we found that SHP2 was downregulated in atherosclerotic vessels. CONCLUSIONS: Overall, SHP2 in macrophages was found to act as an antiatherosclerotic regulator by stabilizing PPARγ in APOE/LDLR null mice.


Asunto(s)
Aterosclerosis , PPAR gamma , Animales , Ratones , Apolipoproteínas E , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/metabolismo
6.
Bioessays ; 45(3): e2200121, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36707486

RESUMEN

The behavior of somatic stem cells is regulated by their niche. Interaction between hematopoietic stem cells (HSCs) and their niches are a representative model to understand stem cell-niche interplay. Here, we provide an overview of crosstalk between HSCs and their niches in bone marrow and extramedullary organs following the life journey of HSCs from emergence, development, maturation until aging. We highlight the unique differences of HSC niches in different life stages within various organs focusing on recent literature to propose new speculations and hypotheses.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Reacciones Cruzadas , Nicho de Células Madre
7.
Proc Natl Acad Sci U S A ; 119(49): e2205013119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442102

RESUMEN

Zika virus (ZIKV) targets the neural progenitor cells (NPCs) in brain during intrauterine infections and consequently causes severe neurological disorders, such as microcephaly in neonates. Although replicating in the cytoplasm, ZIKV dysregulates the expression of thousands of host genes, yet the detailed mechanism remains elusive. Herein, we report that ZIKV encodes a unique DNA-binding protein to regulate host gene transcription in the nucleus. We found that ZIKV NS5, the viral RNA polymerase, associates tightly with host chromatin DNA through its methyltransferase domain and this interaction could be specifically blocked by GTP. Further study showed that expression of ZIKV NS5 in human NPCs markedly suppressed the transcription of its target genes, especially the genes involved in neurogenesis. Mechanistically, ZIKV NS5 binds onto the gene body of its target genes and then blocks their transcriptional elongation. The utero electroporation in pregnant mice showed that NS5 expression significantly disrupts the neurogenesis by reducing the number of Sox2- and Tbr2-positive cells in the fetal cortex. Together, our findings demonstrate a molecular clue linking to the abnormal neurodevelopment caused by ZIKV infection and also provide intriguing insights into the interaction between the host cell and the pathogenic RNA virus, where the cytoplasmic RNA virus encodes a DNA-binding protein to control the transcription of host cell in the nuclei.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Femenino , Embarazo , Animales , Ratones , Cromatina/genética , Virus Zika/genética , Infección por el Virus Zika/genética , ADN , ARN Polimerasas Dirigidas por ADN/genética , Transcripción Genética
8.
Plant J ; 113(4): 665-676, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36507655

RESUMEN

The moss Physcomitrium patens is crucial for studying plant development and evolution. Although the P. patens genome includes genes acquired from bacteria, fungi and viruses, the functions and evolutionary significance of these acquired genes remain largely unclear. Killer protein 4 (KP4) is a toxin secreted by the phytopathogenic fungus Ustilago maydis that inhibits the growth of sensitive target strains by blocking their calcium uptake. Here, we show that KP4 genes in mosses were acquired from fungi through at least three independent events of horizontal gene transfer. Two paralogous copies of KP4 (PpKP4-1 and PpKP4-2) exist in P. patens. Knockout mutants ppkp4-1 and ppkp4-2 showed cell death at the protonemal stage, and ppkp4-2 also exhibited defects in tip growth. We provide experimental evidence indicating that PpKP4-1/2 affects P. patens protonemal cell development by mediating cytoplasmic calcium and that KP4 genes are functionally conserved between P. patens and fungi. The present study provides additional insights into the role of horizontal gene transfer in land plant development and evolution.


Asunto(s)
Briófitas , Bryopsida , Briófitas/metabolismo , Calcio/metabolismo , Proteínas Fúngicas/genética , Hongos/metabolismo , Bryopsida/genética
9.
Small ; : e2307410, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778499

RESUMEN

The detection of monoamine neurotransmitters is of paramount importance as the neurotransmitters are the chemical messengers regulating the gut-brain axis (GBA). It requires real-time, ultrasensitive, and selective sensing of the neurotransmitters in the gastric/intestinal fluid. However, multi-components present in the gastric/intestinal fluid make sensing challenging to achieve in terms of ultra-high sensitivity and selectivity. Herein, an approach is introduced to utilize vanadium single atom catalytic (SAC) centers in van der Waals MoS2 (V-MoS2) to selectively detect real-time serotonin (5-HT) in artificial gastric/intestinal fluid. The synergetic effect of V-SACs and the surface S-bonds on the MoS2 surface, enables an extremely wide range of 5-HT detection (from 1 pM to 100 µM), with optimum selectivity and interference resistance. By combining density functional theory calculations and scanning transmission electron microscopy, it is concluded that the V-SACs embedded in the MoS2 network create active sites that greatly facilitate the charge exchange between the material and the 5-HT molecules. This result allows the 5-HT detection in GBA studies to be more reliable, and the material tunability provides a general platform to achieve real-time and multi-component detection of other monoamine neurotransmitters in GBA such as dopamine and norepinephrine.

10.
Biol Chem ; 405(5): 341-349, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38424700

RESUMEN

Therapy-related leukemia carries a poor prognosis, and leukemia after chemotherapy is a growing risk in clinic, whose mechanism is still not well understood. Ikaros transcription factor is an important regulator in hematopoietic cells development and differentiation. In the absence of Ikaros, lymphoid cell differentiation is blocked at an extremely early stage, and myeloid cell differentiation is also significantly affected. In this work, we showed that chemotherapeutic drug etoposide reduced the protein levels of several isoforms of Ikaros including IK1, IK2 and IK4, but not IK6 or IK7, by accelerating protein degradation, in leukemic cells. To investigate the molecular mechanism of Ikaros degradation induced by etoposide, immunoprecipitation coupled with LC-MS/MS analysis was conducted to identify changes in protein interaction with Ikaros before and after etoposide treatment, which uncovered KCTD5 protein. Our further study demonstrates that KCTD5 is the key stabilizing factor of Ikaros and chemotherapeutic drug etoposide induces Ikaros protein degradation through decreasing the interaction of Ikaros with KCTD5. These results suggest that etoposide may induce leukemic transformation by downregulating Ikaros via KCTD5, and our work may provide insights to attenuate the negative impact of chemotherapy on hematopoiesis.


Asunto(s)
Etopósido , Factor de Transcripción Ikaros , Factor de Transcripción Ikaros/metabolismo , Etopósido/farmacología , Humanos , Proteolisis/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología
11.
J Exp Bot ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046351

RESUMEN

Biosynthesis of the phytoalexins scopoletin and scopolin in Nicotiana species is regulated by upstream signals including jasmonate (JA), ethylene (ET) and NaWRKY3 in response to the necrotrophic fungus Alternaria alternata, which causes brown spot disease. However, how these signals are coordinated to regulate these phytoalexins remains unknown. By analyzing RNA sequencing data and RNA interference, we identified NaERF1B-like (NaERF1B-L) as a key player in Nicotiana attenuata during A. alternata infection by regulating the transcripts of Feruloyl-CoA 6'-hydroxylase 1 (NaF6'H1), encoding a key enzyme for scopoletin biosynthesis, and NaVS1-like (NaVS1-L), a putative biosynthetic gene of the phytoalexin solavetivone. We further demonstrated that the synergistic induction of these two genes by JA and ET signaling is mediated by NaERF1B-L. Additionally, we found that the two closely related proteins NaWRKY6 and NaWRKY3 physically interact to enhance NaERF1B-L expression by directly binding and activating the NaERF1B-L promoter. Collectively, our current results demonstrate that NaERF1B-L plays a positive role in resistance to A. alternata by modulating phytoalexins biosynthesis through the integration of JA/ET and NaWRKY6/3 signaling. Our findings reveal a fine-tuned transcriptional regulatory hierarchy mediated by NaERF1B-L for brown spot disease resistance in wild tobacco.

12.
Hum Genomics ; 17(1): 93, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833774

RESUMEN

BACKGROUND: Tooth agenesis is a common dental anomaly that can substantially affect both the ability to chew and the esthetic appearance of patients. This study aims to identify possible genetic factors that underlie various forms of tooth agenesis and to investigate the possible molecular mechanisms through which human dental pulp stem cells may play a role in this condition. RESULTS: Using whole-exome sequencing of a Han Chinese family with non-syndromic tooth agenesis, a rare mutation in FGFR1 (NM_001174063.2: c.103G > A, p.Gly35Arg) was identified as causative and confirmed by Sanger sequencing. Via GeneMatcher, another family with a known variant (NM_001174063.2: c.1859G > A, p.Arg620Gln) was identified and diagnosed with tooth agenesis and a rare genetic disorder with considerable intrafamilial variability. Fgfr1 is enriched in the ectoderm during early embryonic development of mice and showed sustained low expression during normal embryonic development of Xenopus laevis frogs. Functional studies of the highly conserved missense variant c.103G > A showed deleterious effects. FGFR1 (c.103G > A) was overexpressed compared to wildtype and promoted proliferation while inhibiting apoptosis in HEK293 and human dental pulp stem cells. Moreover, the c.103G > A variant was found to suppress the epithelial-mesenchymal transition. The variant could downregulate ID4 expression and deactivate the TGF-beta signaling pathway by promoting the expression of SMAD6 and SMAD7. CONCLUSION: Our research broadens the mutation spectrum associated with tooth agenesis and enhances understanding of the underlying disease mechanisms of this condition.


Asunto(s)
Anodoncia , Humanos , Células HEK293 , Anodoncia/genética , Mutación , Mutación Missense/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
13.
Brain Behav Immun ; 119: 621-636, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670239

RESUMEN

Rac1 is a key regulator of the cytoskeleton and neuronal plasticity, and is known to play a critical role in psychological and cognitive brain disorders. To elucidate the engram specific Rac1 signaling in fear memory, a doxycycline (Dox)-dependent robust activity marking (RAM) system was used to label dorsal dentate gyrus (DG) engram cells in mice during contextual fear conditioning. Rac1 mRNA and protein levels in DG engram cells were peaked at 24 h (day 1) after fear conditioning and were more abundant in the fear engram cells than in the non-engram cells. Optogenetic activation of Rac1 in a temporal manner in DG engram cells before memory retrieval decreased the freezing level in the fear context. Optogenetic activation of Rac1 increased autophagy protein 7 (ATG7) expression in the DG engram cells and activated DG microglia. Microglia-specific transcriptomics and fluorescence in situ hybridization revealed that overexpression of ATG7 in the fear engram cells upregulated the mRNA of Toll-like receptor TLR2/4 in DG microglia. Knockdown of microglial TLR2/4 rescued fear memory destabilization induced by ATG7 overexpression or Rac1 activation in DG engram cells. These results indicate that Rac1-driven communications between engram cells and microglia contributes to contextual fear memory destabilization, and is mediated by ATG7 and TLR2/4, and suggest a novel mechanistic framework for the cytoskeletal regulator in fear memory interference.


Asunto(s)
Giro Dentado , Miedo , Hipocampo , Memoria , Microglía , Optogenética , Proteína de Unión al GTP rac1 , Animales , Miedo/fisiología , Ratones , Proteína de Unión al GTP rac1/metabolismo , Memoria/fisiología , Microglía/metabolismo , Hipocampo/metabolismo , Giro Dentado/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Neuropéptidos/metabolismo , Plasticidad Neuronal/fisiología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/metabolismo , Condicionamiento Clásico/fisiología
14.
Mol Psychiatry ; 28(1): 448-462, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36481931

RESUMEN

The incubation phenomenon, cue-induced drug craving progressively increasing over prolonged withdrawal, accounts for persistent relapse, leading to a dilemma in the treatment of cocaine addiction. The role of neuronal ensembles activated by initial cocaine experience in the incubation phenomenon was unclear. In this study, with cocaine self-administration (SA) models, we found that neuronal ensembles in the nucleus accumbens shell (NAcSh) showed increasing activation induced by cue-induced drug-seeking after 30-day withdrawal. Inhibition or activation of NAcSh cocaine-ensembles suppressed or promoted craving for cocaine, demonstrating a critical role of NAcSh cocaine-ensembles in incubation for cocaine craving. NAcSh cocaine-ensembles showed a specific increase of membrane excitability and a decrease of inward rectifying channels Kir2.1 currents after 30-day withdrawal. Overexpression of Kir2.1 in NAcSh cocaine-ensembles restored neuronal membrane excitability and suppressed cue-induced drug-seeking after 30-day withdrawal. Expression of dominant-negative Kir2.1 in NAcSh cocaine-ensembles enhanced neuronal membrane excitability and accelerated incubation of cocaine craving. Our results provide a cellular mechanism that the downregulation of Kir2.1 functions in NAcSh cocaine-ensembles induced by prolonged withdrawal mediates the enhancement of ensemble membrane excitability, leading to incubation of cocaine craving.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Cocaína/farmacología , Cocaína/metabolismo , Trastornos Relacionados con Cocaína/metabolismo , Ansia/fisiología , Señales (Psicología) , Regulación hacia Abajo , Comportamiento de Búsqueda de Drogas/fisiología , Núcleo Accumbens/metabolismo , Autoadministración
15.
Langmuir ; 40(12): 6550-6561, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483322

RESUMEN

With environmental pollution becoming more serious, developing efficient treatment technologies for all kinds of organic wastewater has become the focus of current research. In this work, the coaxial electrospinning technology was used to one-step fabricate a porous and underwater superoleophobic polyacrylonitrile nanofibrous membrane with an Fe-based metal-organic framework (MIL-100(Fe)). Benefiting from the synergistic effect of two jets, the nanofibers are smaller and denser, which prompt the exposure of more nanomaterial additives (MIL-100(Fe)). The BET surface area increased to 202.888 m2/g, and the membranes demonstrated outstanding underwater superoleophobicity. Moreover, compared with traditional blended matrix membranes by the single-axis method, separation of the modifier and membrane matrix material by coaxial methods also maintained excellent mechanical properties, which enhanced Young's modulus 3.4 times (∼1.34 MPa). As a result, facing soluble dyes, the porous C-PAN/MIL-100(Fe) membrane can demonstrate outstanding and fast adsorptive property (the Qm of MB and CR reached 44.71 and 88.74 mg g-1, respectively). For oily emulsion, the hydrophilic and oleophobic nanofibrous reticular surface provided excellent separation performance (flux: 1124.0-1549.3 L m-2 h-1, R > 98%). Moreover, the porous and underwater superoleophobic C-PAN/MIL-100(Fe)-0.5 membrane can synchronously purify the dye/oil mixture emulsions by one-step filtration. Based on the above performance, we believe that the modified nanofibrous membrane prepared by one-step coaxial electrospinning technology can promote more studies of the development of membrane preparation technology in the field of oily wastewater treatment.

16.
Nanotechnology ; 35(31)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38387100

RESUMEN

As device feature sizes continue to decrease and fin field effect transistors reach their physical limits, gate all around field effect transistors (GAAFETs) have emerged with larger gate control areas and stackable characteristics for better suppression of second-order effects such as short-channel effects due to their gate encircling characteristics. Traditional methods for studying the electrical characteristics of devices are mostly based on the technology computer-aided design. Still, it is not conducive to developing new devices due to its time-consuming and inefficient drawbacks. Deep learning (DL) and machine learning (ML) have been well-used in recent years in many fields. In this paper, we propose an integrated learning model that integrates the advantages of DL and ML to solve many problems in traditional methods. This integrated learning model predicts the direct current characteristics, capacitance characteristics, and electrical parameters of GAAFET better than those predicted by DL or ML methods alone, with a linear regression factor (R2) greater than 0.99 and very small root mean square error. The proposed integrated learning model achieves fast and accurate prediction of GAAFET electrical characteristics, which provides a new idea for device and circuit simulation and characteristics prediction in microelectronics.

17.
Environ Sci Technol ; 58(8): 3776-3786, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38346331

RESUMEN

Phenols emitted from biomass burning contribute significantly to secondary organic aerosol (SOA) formation through the partitioning of semivolatile products formed from gas-phase chemistry and multiphase chemistry in aerosol liquid water and clouds. The aqueous-phase SOA (aqSOA) formed via hydroxyl radical (•OH), singlet molecular oxygen (1O2*), and triplet excited states of organic compounds (3C*), which oxidize dissolved phenols in the aqueous phase, might play a significant role in the evolution of organic aerosol (OA). However, a quantitative and predictive understanding of aqSOA has been challenging. Here, we develop a stand-alone box model to investigate the formation of SOA from gas-phase •OH chemistry and aqSOA formed by the dissolution of phenols followed by their aqueous-phase reactions with •OH, 1O2*, and 3C* in cloud droplets and aerosol liquid water. We investigate four phenolic compounds, i.e., phenol, guaiacol, syringol, and guaiacyl acetone (GA), which represent some of the key potential sources of aqSOA from biomass burning in clouds. For the same initial precursor organic gas that dissolves in aerosol/cloud liquid water and subsequently reacts with aqueous phase oxidants, we predict that the aqSOA formation potential (defined as aqSOA formed per unit dissolved organic gas concentration) of these phenols is higher than that of isoprene-epoxydiol (IEPOX), a well-known aqSOA precursor. Cloud droplets can dissolve a broader range of soluble phenols compared to aqueous aerosols, since the liquid water contents of aerosols are orders of magnitude smaller than cloud droplets. Our simulations suggest that highly soluble and reactive multifunctional phenols like GA would predominantly undergo cloud chemistry within cloud layers, while gas-phase chemistry is likely to be more important for less soluble phenols. But in the absence of clouds, the condensation of low-volatility products from gas-phase oxidation followed by their reversible partitioning to organic aerosols dominates SOA formation, while the SOA formed through aqueous aerosol chemistry increases with relative humidity (RH), approaching 40% of the sum of gas and aqueous aerosol chemistry at 95% RH for GA. Our model developments of biomass-burning phenols and their aqueous chemistry can be readily implemented in regional and global atmospheric chemistry models to investigate the aqueous aerosol and cloud chemistry of biomass-burning organic gases in the atmosphere.


Asunto(s)
Compuestos Orgánicos , Fenoles , Biomasa , Aerosoles , Agua/química
18.
Acta Pharmacol Sin ; 45(4): 714-727, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38191912

RESUMEN

The O-linked-ß-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) is a critical post-translational modification that couples the external stimuli to intracellular signal transduction networks. However, the critical protein targets of O-GlcNAcylation in oxidative stress-induced apoptosis remain to be elucidated. Here, we show that treatment with H2O2 inhibited O-GlcNAcylation, impaired cell viability, increased the cleaved caspase 3 and accelerated apoptosis of neuroblastoma N2a cells. The O-GlcNAc transferase (OGT) inhibitor OSMI-1 or the O-GlcNAcase (OGA) inhibitor Thiamet-G enhanced or inhibited H2O2-induced apoptosis, respectively. The total and phosphorylated protein levels, as well as the promoter activities of signal transducer and activator of transcription factor 3 (STAT3) and Forkhead box protein O 1 (FOXO1) were suppressed by OSMI-1. In contrast, overexpressing OGT or treating with Thiamet-G increased the total protein levels of STAT3 and FOXO1. Overexpression of STAT3 or FOXO1 abolished OSMI-1-induced apoptosis. Whereas the anti-apoptotic effect of OGT and Thiamet-G in H2O2-treated cells was abolished by either downregulating the expression or activity of endogenous STAT3 or FOXO1. These results suggest that STAT3 or FOXO1 are the potential targets of O-GlcNAcylation involved in the H2O2-induced apoptosis of N2a cells.


Asunto(s)
Apoptosis , Proteína Forkhead Box O1 , Peróxido de Hidrógeno , Factor de Transcripción STAT3 , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Transducción de Señal , Glicosilación , Acilación , Factor de Transcripción STAT3/metabolismo , Proteína Forkhead Box O1/metabolismo , Animales , Ratones , Línea Celular Tumoral
19.
Arch Insect Biochem Physiol ; 115(1): e22070, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288484

RESUMEN

DNA barcoding is a useful addition to the traditional morphology-based taxonomy. A ca. 650 bp fragment of the 5' end of mitochondrial cytochrome c oxidase subunit I (hereafter COI-5P) DNA barcoding was sued as a practical tool for Gampsocleis species identification. DNA barcodes from 889 specimens belonging to 8 putative Gampsocleis species was analyzed, including 687 newly generated DNA barcodes. These barcode sequences were clustered/grouped into Operational Taxonomic Units (OTUs) using the criteria of five algorithms, namely Barcode Index Number (BIN) System, Assemble Species by Automatic Partitioning (ASAP), a Java program uses an explicit, determinate algorithm to define Molecular Operational Taxonomic Unit (jMOTU), Generalized Mixed Yule Coalescent (GMYC), and Bayesian implementation of the Poisson Tree Processes model (bPTP). The Taxon ID Tree grouped sequences of morphospecies and almost all MOTUs in distinct nonoverlapping clusters. Both long- and short-winged Gampsocleis species are reciprocally monophyletic in the Taxon ID Tree. In BOLD, 889 barcode sequences are assigned to 17 BINs. The algorithms ASAP, jMOTU, bPTP and GMYC clustered the barcode sequences into 6, 13, 10, and 23 MOTUs, respectively. BIN, ASAP, and bPTP algorithm placed three long-winged species, G. sedakovii, G. sinensis and G. ussuriensis within the same MOTU. All species delimitation algorithms split two short-winged species,G. fletcheri and G. gratiosa into at least two MOTUs each, except for ASAP algorithm. More detailed molecular and morphological integrative studies are required to clarify the status of these MOTUs in the future.


Asunto(s)
Código de Barras del ADN Taxonómico , Ortópteros , Animales , Teorema de Bayes , Ortópteros/genética , Filogenia , ADN
20.
Graefes Arch Clin Exp Ophthalmol ; 262(6): 1919-1924, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38294512

RESUMEN

PURPOSE: Dysthyroid optic neuropathy (DON) leads to vision loss. This study aimed to investigate a new method that can directly evaluate the change in muscle cone inner volume (MCIV) and distinguish DON orbits from non-DONs. MATERIALS AND METHODS: This study included 54 patients (108 orbits) who were diagnosed with thyroid eye disease and treated at the Beijing Tongren Hospital between December 2019 and September 2021. The extraocular muscle volume (EOMV), orbital fat volume (OFV), and bony orbit volume (BOV) of the patients were measured using three-dimensional reconstruction. MCIV was measured using artificially defined boundaries. The associations between these volumes and clinical indicators were studied, and the diagnostic efficacy of these volumes for DON was described using receiver operating characteristic (ROC) curves. RESULTS: The ROC curve showed that the area under the curve of MCIV/BOV (%) combined with EOMV/BOV (%) reached 0.862 (p < 0.001), with a sensitivity of 85.7% and a specificity of 76.1%. CONCLUSION: The combination of MCIV/BOV (%) and EOMV/BOV (%) is a good indicator for the diagnosis of DON, which aids in the early detection and intervention of DON.


Asunto(s)
Oftalmopatía de Graves , Imagenología Tridimensional , Músculos Oculomotores , Enfermedades del Nervio Óptico , Órbita , Curva ROC , Humanos , Masculino , Femenino , Persona de Mediana Edad , Oftalmopatía de Graves/diagnóstico , Oftalmopatía de Graves/cirugía , Enfermedades del Nervio Óptico/diagnóstico , Órbita/diagnóstico por imagen , Estudios Retrospectivos , Músculos Oculomotores/cirugía , Músculos Oculomotores/fisiopatología , Adulto , Anciano , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA