Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neuroinflammation ; 18(1): 41, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541361

RESUMEN

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a very common complication that might increase the morbidity and mortality of elderly patients after surgery. However, the mechanism of POCD remains largely unknown. The NAD-dependent deacetylase protein Sirtuin 3 (SIRT3) is located in the mitochondria and regulates mitochondrial function. SIRT3 is the only sirtuin that specifically plays a role in extending lifespan in humans and is associated with neurodegenerative diseases. Therefore, the aim of this study was to evaluate the effect of SIRT3 on anesthesia/surgery-induced cognitive impairment in aged mice. METHODS: SIRT3 expression levels were decreased after surgery. For the interventional study, an adeno-associated virus (AAV)-SIRT3 vector or an empty vector was microinjected into hippocampal CA1 region before anesthesia/surgery. Western blotting, immunofluorescence staining, and enzyme-linked immune-sorbent assay (ELISA) were used to measure the oxidative stress response and downstream microglial activation and proinflammatory cytokines, and Golgi staining and long-term potentiation (LTP) recording were applied to evaluate synaptic plasticity. RESULTS: Overexpression of SIRT3 in the CA1 region attenuated anesthesia/surgery-induced learning and memory dysfunction as well as synaptic plasticity dysfunction and the oxidative stress response (superoxide dismutase [SOD] and malondialdehyde [MDA]) in aged mice with POCD. In addition, microglia activation (ionized calcium binding adapter molecule 1 [Iba1]) and neuroinflammatory cytokine levels (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-1ß and IL-6) were regulated after anesthesia/surgery in a SIRT3-dependent manner. CONCLUSION: The results of the current study demonstrate that SIRT3 has a critical effect in the mechanism of POCD in aged mice by suppressing hippocampal neuroinflammation and reveal that SIRT3 may be a promising therapeutic and diagnostic target for POCD.


Asunto(s)
Envejecimiento/metabolismo , Anestésicos por Inhalación/toxicidad , Hipocampo/metabolismo , Mediadores de Inflamación/metabolismo , Complicaciones Cognitivas Postoperatorias/metabolismo , Sirtuina 3/biosíntesis , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Hipocampo/efectos de los fármacos , Hipocampo/patología , Mediadores de Inflamación/antagonistas & inhibidores , Isoflurano/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroprotección/efectos de los fármacos , Neuroprotección/fisiología , Complicaciones Cognitivas Postoperatorias/inducido químicamente , Complicaciones Cognitivas Postoperatorias/etiología , Complicaciones Cognitivas Postoperatorias/prevención & control , Fracturas de la Tibia/cirugía
2.
Bioprocess Biosyst Eng ; 40(3): 423-429, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27878591

RESUMEN

Acetoin is a natural flavor and an important bio-based chemical which could be separated from fermentation broth by solvent extraction, salting-out extraction or recovered in the form of derivatives. In this work, a novel method named as sugaring-out extraction coupled with fermentation was tried in the acetoin production by Bacillus subtilis DL01. The effects of six solvents on bacterial growth and the distribution of acetoin and glucose in different solvent-glucose systems were explored. The operation parameters such as standing time, glucose concentration, and volume ratio of ethyl acetate to fermentation broth were determined. In a system composed of fermentation broth, glucose (100%, m/v) and two-fold volume of ethyl acetate, nearly 100% glucose was distributed into bottom phase, and 61.2% acetoin into top phase without coloring matters and organic acids. The top phase was treated by vacuum distillation to remove solvent and purify acetoin, while the bottom phase was used as carbon source to produce acetoin in the next batch of fermentation.


Asunto(s)
Acetoína/química , Bacillus subtilis/metabolismo , Fermentación , Microbiología Industrial/métodos , Acetatos/química , Ácidos/química , Bacillus subtilis/genética , Butileno Glicoles/química , Técnicas de Química Analítica , Color , Medios de Cultivo/química , Glucosa/química , Ingeniería Metabólica , Solventes/química
3.
Ageing Res Rev ; 99: 102363, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838785

RESUMEN

The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.


Asunto(s)
Trastornos Mentales , Humanos , Trastornos Mentales/fisiopatología , Trastornos Mentales/terapia , Animales , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/fisiopatología
4.
CNS Neurosci Ther ; 30(9): e70024, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39218798

RESUMEN

AIMS: Type 2 diabetes mellitus (T2DM) is related to an increased risk of postoperative cognitive dysfunction (POCD), which may be caused by neuronal hyperexcitability. Astrocyte glutamate transporter 1 (GLT-1) plays a crucial role in regulating neuron excitability. We investigated if T2DM would magnify the increased neuronal excitability induced by anesthesia/surgery (A/S) and lead to POCD in young adult mice, and if so, determined whether these effects were associated with GLT-1 expression. METHODS: T2DM model was induced by high fat diet (HFD) and injecting STZ. Then, we evaluated the spatial learning and memory of T2DM mice after A/S with the novel object recognition test (NORT) and object location test (OLT). Western blotting and immunofluorescence were used to analyze the expression levels of GLT-1 and neuronal excitability. Oxidative stress reaction and neuronal apoptosis were detected with SOD2 expression, MMP level, and Tunel staining. Hippocampal functional synaptic plasticity was assessed with long-term potentiation (LTP). In the intervention study, we overexpressed hippocampal astrocyte GLT-1 in GFAP-Cre mice. Besides, AAV-Camkllα-hM4Di-mCherry was injected to inhibit neuronal hyperexcitability in CA1 region. RESULTS: Our study found T2DM but not A/S reduced GLT-1 expression in hippocampal astrocytes. Interestingly, GLT-1 deficiency alone couldn't lead to cognitive decline, but the downregulation of GLT-1 in T2DM mice obviously enhanced increased hippocampal glutamatergic neuron excitability induced by A/S. The hyperexcitability caused neuronal apoptosis and cognitive impairment. Overexpression of GLT-1 rescued postoperative cognitive dysfunction, glutamatergic neuron hyperexcitability, oxidative stress reaction, and apoptosis in hippocampus. Moreover, chemogenetic inhibition of hippocampal glutamatergic neurons reduced oxidative stress and apoptosis and alleviated postoperative cognitive dysfunction. CONCLUSIONS: These findings suggest that the adult mice with type 2 diabetes are at an increased risk of developing POCD, perhaps due to the downregulation of GLT-1 in hippocampal astrocytes, which enhances increased glutamatergic neuron excitability induced by A/S and leads to oxidative stress reaction, and neuronal apoptosis.


Asunto(s)
Astrocitos , Diabetes Mellitus Tipo 2 , Regulación hacia Abajo , Transportador 2 de Aminoácidos Excitadores , Hipocampo , Ratones Endogámicos C57BL , Complicaciones Cognitivas Postoperatorias , Animales , Transportador 2 de Aminoácidos Excitadores/metabolismo , Transportador 2 de Aminoácidos Excitadores/biosíntesis , Transportador 2 de Aminoácidos Excitadores/genética , Astrocitos/metabolismo , Complicaciones Cognitivas Postoperatorias/etiología , Complicaciones Cognitivas Postoperatorias/metabolismo , Hipocampo/metabolismo , Ratones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Transgénicos
5.
CNS Neurosci Ther ; 30(2): e14604, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38332635

RESUMEN

AIM: Repeated exposure to ketamine during the neonatal period in mice leads to cognitive impairments in adulthood. These impairments are likely caused by synaptic plasticity and excitability damage. We investigated the precise role of brain-derived neurotrophic factor (BDNF) in the cognitive impairments induced by repeated ketamine exposure during the neonatal period. METHODS: We evaluated the cognitive function of mice using the Morris water maze test and novel object recognition test. Western blotting and immunofluorescence were used to detect the protein levels of BDNF. Western blotting, Golgi-Cox staining, transmission electron microscopy, and long-term potentiation (LTP) recordings were used to assess synaptic plasticity in the hippocampus. The excitability of neurons was evaluated using c-Fos. In the intervention experiment, pAdeno-CaMKIIα-BDNF-mNeuronGreen was injected into the hippocampal CA1 region of mice to increase the level of BDNF. The excitability of neurons was enhanced using a chemogenetic approach. RESULTS: Our findings suggest that cognitive impairments in mice repeatedly exposed to ketamine during the neonatal period are associated with downregulated BDNF protein level, synaptic plasticity damage, and decreased excitability of glutamatergic neurons in the hippocampal CA1 region. Furthermore, the specific upregulation of BDNF in glutamatergic neurons of the hippocampal CA1 region and the enhancement of excitability can improve impaired synaptic plasticity and cognitive function in mice. CONCLUSION: BDNF downregulation mediates synaptic plasticity and excitability damage, leading to cognitive impairments in adulthood following repeated ketamine exposure during the neonatal period.


Asunto(s)
Disfunción Cognitiva , Ketamina , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ketamina/toxicidad , Regulación hacia Abajo , Plasticidad Neuronal/fisiología , Hipocampo/metabolismo , Neuronas/metabolismo , Disfunción Cognitiva/metabolismo
6.
Mol Neurobiol ; 60(10): 5789-5804, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37349621

RESUMEN

The mechanism underlying the hypnosis effect of propofol is still not fully understood. In essence, the nucleus accumbens (NAc) is crucial for regulating wakefulness and may be directly engaged in the principle of general anesthesia. However, the role of NAc in the process of propofol-induced anesthesia is still unknown. We used immunofluorescence, western blotting, and patch-clamp to access the activities of NAc GABAergic neurons during propofol anesthesia, and then we utilized chemogenetic and optogenetic methods to explore the role of NAc GABAergic neurons in regulating propofol-induced general anesthesia states. Moreover, we also conducted behavioral tests to analyze anesthetic induction and emergence. We found out that c-Fos expression was considerably dropped in NAc GABAergic neurons after propofol injection. Meanwhile, patch-clamp recording of brain slices showed that firing frequency induced by step currents in NAc GABAergic neurons significantly decreased after propofol perfusion. Notably, chemically selective stimulation of NAc GABAergic neurons during propofol anesthesia lowered propofol sensitivity, prolonged the induction of propofol anesthesia, and facilitated recovery; the inhibition of NAc GABAergic neurons exerted opposite effects. Furthermore, optogenetic activation of NAc GABAergic neurons promoted emergence whereas the result of optogenetic inhibition was the opposite. Our results demonstrate that NAc GABAergic neurons modulate propofol anesthesia induction and emergence.


Asunto(s)
Propofol , Propofol/farmacología , Núcleo Accumbens , Neuronas GABAérgicas , Hipnóticos y Sedantes/farmacología , Anestesia General
7.
Front Mol Neurosci ; 15: 877263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571375

RESUMEN

It has been widely demonstrated by numerous preclinical studies and clinical trials that the neonates receiving repeated or long-time general anesthesia (GA) could develop prolonged cognitive dysfunction. However, the definite mechanism remains largely unknown. Epigenetics, which is defined as heritable alterations in gene expression that are not a result of alteration of DNA sequence, includes DNA methylation, histone post-translational modifications, non-coding RNAs (ncRNAs), and RNA methylation. In recent years, the role of epigenetic modifications in neonatal GA-induced neurotoxicity has been widely explored and reported. In this review, we discuss and conclude the epigenetic mechanisms involving in the process of neonatal anesthesia-induced cognitive dysfunction. Also, we analyze the wide prospects of epigenetics in this field and its possibility to work as treatment target.

8.
J Agric Food Chem ; 70(30): 9412-9420, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35879021

RESUMEN

The objective of this study is to find new selective allelochemicals for managing two problematic weeds redroot pigweed (Amaranthus retroflexus) and common lambsquarters (Chenopodium album) with minimal negative effects on wheat, thereby facilitating the development of eco-friendly botanical herbicide. Three new sesquiterpenoids, sonarvenolide A-C (1-3), and nine known sesquiterpenoids (4-12) were isolated from Sonchus arvensis. Compound 1 was a rare peroxide-substituted eudesmane-type sesquiterpenoid, and compound 3 was a rare iphionane-type sesquiterpenoid. Notably, compounds 1, 3, 4, 6-8, and 11 showed selectivity phytotoxic activity. In particular, compounds 1, 3, and 4 exhibited excellent germination inhibitory effect on A. retroflexus (IC50 = 32.0-129.0 µM), higher than that of the positive control triasulfuron (IC50 = 141.7 µM), and compound 4 showed excellent inhibition on C. album (IC50 = 82.0 µM), higher than that of triasulfuron (IC50 = 100.9 µM). In addition, compounds 1, 3, and 4 showed allelopathy to the growth of two weeds, which were more potent than or close to that of triasulfuron. Furthermore, these compounds were not toxic to wheat even at a high concentration (1000 µM). Structure-activity relationships (SARs) revealed that the presence of peroxides or the absence of hydroxyl at C-5 in the eudesmane-type sesquiterpenoids could strengthen the inhibitory activities. The discovery of selective allelochemicals provides not only a new choice to control two problematic weeds of wheat but also new natural lead compounds for herbicides.


Asunto(s)
Amaranthus , Chenopodium album , Herbicidas , Sesquiterpenos de Eudesmano , Sesquiterpenos , Sonchus , Herbicidas/química , Herbicidas/toxicidad , Feromonas/farmacología , Malezas , Sesquiterpenos/toxicidad , Sesquiterpenos de Eudesmano/farmacología , Triticum
9.
Mol Neurobiol ; 59(3): 1938-1953, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35034265

RESUMEN

Neonates who receive repeated or prolonged general anesthesia before the age of 4 are at a significantly higher risk of developing cognitive dysfunction later in life. In this study, we investigated the effects of repeated neonatal propofol exposure on hippocampal synaptic plasticity, neuronal excitability, and cognitive function. Adeno-associated SIRT1 virus with CaMKIIɑ promotor and a viral vector carrying the photosensitive gene ChR2 with the CaMKIIɑ promotor, as well as their control vectors, were stereotaxically injected into the hippocampal CA1 region of postnatal day 5 (PND-5) rats. PND-7 rats were given intraperitoneal injection of 60 mg/kg propofol or fat emulsion for three consecutive days. Western blotting, Golgi staining, and double immunofluorescence staining were used to evaluate the SIRT1 expression, synaptic plasticity, and the excitability of neurons in the hippocampal CA1 region. The Morris water maze (MWM) test was conducted on PND-30 to assess the learning and memory abilities of rats. Repeated neonatal propofol exposure reduced SIRT1 expression, suppressed synaptic plasticity, decreased glutamatergic neuron excitability in the hippocampus, and damaged learning and memory abilities. Overexpression of SIRT1 attenuated propofol-induced cognitive dysfunction, excitation-inhibition imbalance, and synaptic plasticity damage. After optogenetic stimulation of glutamatergic neurons in the hippocampal CA1 region, the learning and memory abilities of rats exposed to propofol were improved on PND-30. Our findings demonstrate that SIRT1 plays an important role in cognitive dysfunction induced by repeated neonatal propofol exposure by suppressing synaptic plasticity and neuronal excitability.


Asunto(s)
Disfunción Cognitiva , Propofol , Animales , Animales Recién Nacidos , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Aprendizaje por Laberinto , Plasticidad Neuronal , Neuronas/metabolismo , Propofol/farmacología , Ratas , Ratas Sprague-Dawley , Sirtuina 1/metabolismo
10.
Brain Res Bull ; 174: 339-348, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245841

RESUMEN

Comorbid chronic pain and depression are increasingly becoming a concerning public problem, but the underlying mechanisms remain unclear. Here, we demonstrate that pain-related depression-like behaviors are induced in a rat model of chronic constriction injury (CCI). Using this model, we found that chronic neuropathic pain decreased the activity and expression of sirtuin 1 (SIRT1, an NAD+-dependent deacetylase) in the central nucleus of the amygdala (CeA). In addition, the pharmacologic activation of SIRT1 in the CeA could alleviate the depression-like behaviors associated with chronic pain while relieving sensory pain. Accordingly, adeno-associated virus (AAV)-mediated SIRT1 overexpression in the CeA produced a positive effect on the easement of chronic pain and comorbid depression. Taken together, these findings highlight the role of SIRT1 in the CeA in chronic pain and depression states and reveal that the upregulation of SIRT1 may be a potential therapy for the treatment of pain-depression comorbidities.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Depresión/genética , Depresión/terapia , Terapia Genética/métodos , Neuralgia/genética , Neuralgia/terapia , Sirtuina 1/genética , Animales , Conducta Animal , Enfermedad Crónica , Depresión/complicaciones , Regulación hacia Abajo , Masculino , Neuralgia/complicaciones , Ratas , Ratas Sprague-Dawley , Sirtuina 1/metabolismo
11.
Front Aging Neurosci ; 13: 716383, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483886

RESUMEN

Postoperative cognitive dysfunction (POCD) is a common complication in elderly patients. Circular RNAs (circRNAs) may contribute to neurodegenerative diseases. However, the role of circRNAs in POCD in aged mice has not yet been reported. This study aimed to explore the potential circRNAs in a POCD model. First, a circRNA microarray was used to analyze the expression profiles. Differentially expressed circRNAs were validated using quantitative real-time polymerase chain reaction. A bioinformatics analysis was then used to construct a competing endogenous RNA (ceRNA) network. The database for annotation, visualization, and integrated discovery was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of circRNA-related genes. Moreover, protein-protein interactions were analyzed to predict the circRNA-regulated hub genes using the STRING and molecular complex detection plug-in of Cytoscape. Microarray screen 124 predicted circRNAs in the POCD of aged mice. We found that the up/downregulated circRNAs were involved in multiple signaling pathways. Hub genes, including Egfr and Prkacb, were identified and may be regulated by ceRNA networks. These results suggest that circRNAs are dysexpressed in the hippocampus and may contribute to POCD in aged mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA