Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 36(5): 1736-1754, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315889

RESUMEN

Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.


Asunto(s)
Etilenos , Proteínas F-Box , Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Plantas , Rosa , Etilenos/metabolismo , Etilenos/farmacología , Giberelinas/metabolismo , Giberelinas/farmacología , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rosa/genética , Rosa/efectos de los fármacos , Rosa/metabolismo , Flores/genética , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Senescencia de la Planta/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética
2.
Plant J ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180235

RESUMEN

Hypersensitive response-programmed cell death (HR-PCD) regulated by Ca2+ signal is considered the major regulator of resistance against Puccinia triticina (Pt.) infection in wheat. In this study, the bread wheat variety Thatcher and its near-isogenic line with the leaf rust resistance locus Lr26 were infected with the Pt. race 260 to obtain the compatible and incompatible combinations, respectively. The expression of translationally controlled tumor protein (TaTCTP) was upregulated upon infection with Pt., through a Ca2+-dependent mechanism in the incompatible combination. The knockdown of TaTCTP markedly increased the area of dying cell and the number of Pt. haustorial mother cells (HMCs) at the infection sites, whereas plants overexpressing the gene exhibited enhanced resistance. The interaction between TaTCTP and calcineurin B-like protein-interacting protein kinase 23 (TaCIPK23) was also investigated, and the interaction was found occurred in the endoplasmic reticulum. TaCIPK23 phosphorylated TaTCTP in vitro. The expression of a phospho-mimic TaTCTP mutant in Nicotiana benthamiana promoted HR-like cell death. Silencing TaCIPK23 or TaCIPK23/TaTCTP co-silencing resulted in the same results as silencing TaTCTP. This suggested that TaTCTP is a novel phosphorylation target of TaCIPK23, and both participate in the resistance of wheat to Pt. in the same pathway.

3.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36470841

RESUMEN

Modules consisting of antibiotic resistance genes (ARGs) flanked by inverted repeat Xer-specific recombination sites were thought to be mobile genetic elements that promote horizontal transmission. Less frequently, the presence of mobile modules in plasmids, which facilitate a pdif-mediated ARGs transfer, has been reported. Here, numerous ARGs and toxin-antitoxin genes have been found in pdif site pairs. However, the mechanisms underlying this apparent genetic mobility is currently not understood, and the studies relating to pdif-mediated ARGs transfer onto most bacterial genera are lacking. We developed the web server pdifFinder based on an algorithm called PdifSM that allows the prediction of diverse pdif-ARGs modules in bacterial genomes. Using test set consisting of almost 32 thousand plasmids from 717 species, PdifSM identified 481 plasmids from various bacteria containing pdif sites with ARGs. We found 28-bp-long elements from different genera with clear base preferences. The data we obtained indicate that XerCD-dif site-specific recombination mechanism may have evolutionary adapted to facilitate the pdif-mediated ARGs transfer. Through multiple sequence alignment and evolutionary analyses of duplicated pdif-ARGs modules, we discovered that pdif sites allow an interspecies transfer of ARGs but also across different genera. Mutations in pdif sites generate diverse arrays of modules which mediate multidrug-resistance, as these contain variable numbers of diverse ARGs, insertion sequences and other functional genes. The identification of pdif-ARGs modules and studies focused on the mechanism of ARGs co-transfer will help us to understand and possibly allow controlling the spread of MDR bacteria in clinical settings. The pdifFinder code, standalone software package and description with tutorials are available at https://github.com/mjshao06/pdifFinder.


Asunto(s)
Antibacterianos , Bacterias , Antibacterianos/farmacología , Bacterias/genética , Farmacorresistencia Microbiana/genética , Plásmidos/genética , Genoma Bacteriano , Genes Bacterianos
4.
Nat Mater ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134648

RESUMEN

Naive pluripotent stem cells have the highest developmental potential but their in vivo existence in the blastocyst is transient. Here we report a blastocyst motif substrate for the in vitro reversion of mouse and human pluripotent stem cells to a naive state. The substrate features randomly varied microstructures, which we call motifs, mimicking the geometry of the blastocyst. Motifs representing mouse-blastocyst-scaled curvature ranging between 15 and 62 mm-1 were the most efficient in promoting reversion to naivety, as determined by time-resolved correlative analysis. In these substrates, apical constriction enhances E-cadherin/RAC1 signalling and activates the mechanosensitive nuclear transducer YAP, promoting the histone modification of pluripotency genes. This results in enhanced levels of pluripotency transcription factor NANOG, which persist even after cells are removed from the substrate. Pluripotent stem cells cultured in blastocyst motif substrates display a higher development potential in generating embryoid bodies and teratomas. These findings shed light on naivety-promoting substrate design and their large-scale implementation.

5.
Plant Physiol ; 194(4): 2338-2353, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38084893

RESUMEN

Maintaining proper flower size is vital for plant reproduction and adaption to the environment. Petal size is determined by spatiotemporally regulated cell proliferation and expansion. However, the mechanisms underlying the orchestration of cell proliferation and expansion during petal growth remains elusive. Here, we determined that the transition from cell proliferation to expansion involves a series of distinct and overlapping processes during rose (Rosa hybrida) petal growth. Changes in cytokinin content were associated with the transition from cell proliferation to expansion during petal growth. RNA sequencing identified the AP2/ERF transcription factor gene RELATED TO AP2 4-LIKE (RhRAP2.4L), whose expression pattern positively associated with cytokinin levels during rose petal development. Silencing RhRAP2.4L promoted the transition from cell proliferation to expansion and decreased petal size. RhRAP2.4L regulates cell proliferation by directly repressing the expression of KIP RELATED PROTEIN 2 (RhKRP2), encoding a cell cycle inhibitor. In addition, we also identified BIG PETALub (RhBPEub) as another direct target gene of RhRAP2.4L. Silencing RhBPEub decreased cell size, leading to reduced petal size. Furthermore, the cytokinin signaling protein ARABIDOPSIS RESPONSE REGULATOR 14 (RhARR14) activated RhRAP2.4L expression to inhibit the transition from cell proliferation to expansion, thereby regulating petal size. Our results demonstrate that RhRAP2.4L performs dual functions in orchestrating cell proliferation and expansion during petal growth.


Asunto(s)
Arabidopsis , Rosa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Regulación del Desarrollo de la Expresión Génica , Citocininas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proliferación Celular/genética , Flores
6.
Plant Physiol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189546

RESUMEN

Leaf rust, caused by Puccinia triticina Erikss. (Pt), is a serious disease threatening wheat (Triticum aestivum L.) production worldwide. Hydrogen peroxide (H2O2) triggered by Pt infection in resistant wheat cultivars cause oxidative damage directly to biomolecules or is activated by calcium signaling and mediates the hypersensitive response. Calmodulin-binding transcriptional activator 4 (TaCAMTA4) has been reported to negatively regulate wheat resistance to Pt. In this study, we found that TaCAMTA4 was induced by Pt race 165 in its compatible host harboring the Pt resistant locus Lr26, TcLr26, and silencing of TaCAMTA4 increased local H2O2 accumulation and Pt resistance. Subcellular localization and autoactivation tests revealed that TaCAMTA4 is a nucleus-localized transcriptional activator. Furthermore, four DNA motifs recognized by TaCAMTA4 were identified by transcription factor-centered Y1H. Through analyzing the transcriptome database, four gene clusters were identified, each containing a different DNA motif on each promoter. Among them, the expression of catalase 1 (TaCAT1) with motif-1 was highly induced in the compatible interaction and was decreased when TaCAMTA4 was silenced. The results of EMSA, ChIP-qPCR, and RT-qPCR further showed that TaCAMTA4 directly bound motif-1 in the TaCAT1 promoter. Furthermore, silencing of TaCAT1 resulted in enhanced resistance to Pt and increased local H2O2 accumulation in wheat, which is consistent with that of TaCAMTA4. Since CAMTAs are Ca2+ sensors and catalases catalyze the decomposition of H2O2, we hypothesize that Ca2+ regulates the plant immune networks that are controlled by H2O2 and implicate a potential mechanism for Pt to suppress resistance by inducing the expression of the TaCAMTA4-TaCAT1 module, which consequently enhances H2O2 scavenging and attenuates H2O2-dependent resistance.

7.
Plant Physiol ; 195(4): 2815-2828, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38753307

RESUMEN

Sweet osmanthus (Osmanthus fragrans) is famous in China for its flowers and contains four groups: Albus, Luteus, Aurantiacus, and Asiaticus. Understanding the relationships among these groups and the genetic mechanisms of flower color and aroma biosynthesis are of tremendous interest. In this study, we sequenced representative varieties from two of the four sweet osmanthus groups. Multiomics and phylogenetic analyses of varieties from each of the four groups showed that Asiaticus split first within the species, followed by Aurantiacus and the sister groups Albus and Luteus. We show that the difference in flower color between Aurantiacus and the other three groups was caused by a 4-bp deletion in the promoter region of carotenoid cleavage dioxygenase 4 (OfCCD4) that leads to expression decrease. In addition, we identified 44 gene pairs exhibiting significant structural differences between the multiseasonal flowering variety "Rixianggui" in the Asiaticus group and other autumn-flowering varieties. Through correlation analysis between intermediate products of aromatic components and gene expression, we identified eight genes associated with the linalool and α- and ß-ionone biosynthesis pathways. Overall, our study offers valuable genetic resources for sweet osmanthus, while also providing genetic clues for improving the flower color and multiseasonal flowering of osmanthus and other flowers.


Asunto(s)
Flores , Oleaceae , Filogenia , Oleaceae/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genómica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Multiómica
8.
Med Res Rev ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38922930

RESUMEN

Breast cancer (BC) is a highly heterogeneous disease, and the presence of germline breast cancer gene mutation (gBRCAm) is associated with a poor prognosis. Triple-negative breast cancer (TNBC) is a BC subtype, characterized by the absence of hormone and growth factor receptor expression, making therapeutic decisions difficult. Defects in the DNA damage response pathway due to mutation in breast cancer genes (BRCA 1/2) lead to homologous recombination deficiency (HRD). However, in HRD conditions, poly (adenosine diphosphate-ribose) polymerase (PARP) proteins repair DNA damage and lead to tumor cell survival. Biological understanding of HRD leads to the development of PARP inhibitors (PARPi), which trap PARP proteins and cause genomic instability and tumor cell lysis. HRD assessment can be an important biomarker in identifying gBRCAm patients with BC who could benefit from PARPi therapy. HRD can be identified by homologous recombination repair (HRR) gene-based assays, genomic-scarring assays and mutational signatures, transcription and protein expression profiles, and functional assays. However, gold standard methodologies that are robust and reliable to assess HRD are not available currently. Hence, there is a pressing need to develop accurate biomarkers identifying HRD tumors to guide targeted therapies such as PARPi in patients with BC. HRD assessment has shown fruitful outcomes in chemotherapy studies and preliminary evidence on PARPi intervention as monotherapy and combination therapy in HRD-stratified patients. Furthermore, ongoing trials are exploring the potential of PARPi in BC and clinically complex TNBC settings, where HRD testing is used as an adjunct to stratify patients based on BRCA mutations.

9.
Plant J ; 116(6): 1737-1747, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37694805

RESUMEN

Dicer-like (DCL) proteins are principal components of RNA silencing, a major defense mechanism against plant virus infections. However, their functions in suppressing virus-induced disease phenotypes remain largely unknown. Here, we identified a role for tomato (Solanum lycopersicum) DCL2b in regulating the wiry leaf phenotype during defense against tobacco mosaic virus (TMV). Knocking out SlyDCL2b promoted TMV accumulation in the leaf primordium, resulting in a wiry phenotype in distal leaves. Biochemical and bioinformatics analyses showed that 22-nt virus-derived small interfering RNAs (vsiRNAs) accumulated less abundantly in slydcl2b mutants than in wild-type plants, suggesting that SlyDCL2b-dependent 22-nt vsiRNAs are required to exclude virus from leaf primordia. Moreover, the wiry leaf phenotype was accompanied by upregulation of Auxin Response Factors (ARFs), resulting from a reduction in trans-acting siRNAs targeting ARFs (tasiARFs) in TMV-infected slydcl2b mutants. Loss of tasiARF production in the slydcl2b mutant was in turn caused by inhibition of miRNA390b function. Importantly, silencing SlyARF3 and SlyARF4 largely restored the wiry phenotype in TMV-infected slydcl2b mutants. Our work exemplifies the complex relationship between RNA viruses and the endogenous RNA silencing machinery, whereby SlyDCL2b protects the normal development of newly emerging organs by excluding virus from these regions and thus maintaining developmental silencing.


Asunto(s)
Virus de Plantas , Solanum lycopersicum , Virus del Mosaico del Tabaco , Virus del Mosaico del Tabaco/fisiología , Solanum lycopersicum/genética , Virus de Plantas/genética , ARN Interferente Pequeño/genética , Ácidos Indolacéticos , Hojas de la Planta/genética , Fenotipo , Enfermedades de las Plantas
10.
BMC Genomics ; 25(1): 478, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745294

RESUMEN

BACKGROUND: Tuberculosis (TB) represents a major global health challenge. Drug resistance in Mycobacterium tuberculosis (MTB) poses a substantial obstacle to effective TB treatment. Identifying genomic mutations in MTB isolates holds promise for unraveling the underlying mechanisms of drug resistance in this bacterium. METHODS: In this study, we investigated the roles of single nucleotide variants (SNVs) in MTB isolates resistant to four antibiotics (moxifloxacin, ofloxacin, amikacin, and capreomycin) through whole-genome analysis. We identified the drug-resistance-associated SNVs by comparing the genomes of MTB isolates with reference genomes using the MuMmer4 tool. RESULTS: We observed a strikingly high proportion (94.2%) of MTB isolates resistant to ofloxacin, underscoring the current prevalence of drug resistance in MTB. An average of 3529 SNVs were detected in a single ofloxacin-resistant isolate, indicating a mutation rate of approximately 0.08% under the selective pressure of ofloxacin exposure. We identified a set of 60 SNVs associated with extensively drug-resistant tuberculosis (XDR-TB), among which 42 SNVs were non-synonymous mutations located in the coding regions of nine key genes (ctpI, desA3, mce1R, moeB1, ndhA, PE_PGRS4, PPE18, rpsA, secF). Protein structure modeling revealed that SNVs of three genes (PE_PGRS4, desA3, secF) are close to the critical catalytic active sites in the three-dimensional structure of the coding proteins. CONCLUSION: This comprehensive study elucidates novel resistance mechanisms in MTB against antibiotics, paving the way for future design and development of anti-tuberculosis drugs.


Asunto(s)
Mycobacterium tuberculosis , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Genoma Bacteriano , Humanos , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Mutación , Antituberculosos/farmacología , Proteínas Bacterianas/genética
11.
Anal Chem ; 96(21): 8450-8457, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38728011

RESUMEN

Accurate and quantitative detection of pre-eclampsia markers is crucial in reducing pregnancy mortality rates. This study introduces a novel approach utilizing a fluorescent biosensor by the immunosorbent atom transfer radical polymerization (immuno-ATRP) assay to detect the pre-eclampsia protein marker CD81. The critical step used in this sensor is the novel signal amplification strategy of fluorescein polymerization mediated by ferritin-enhanced controlled radical polymerization, which combines with a traditional enzyme-linked immunosorbent assay (ELISA) to further reduce the detection limit of the CD81 protein concentration. The fluorescence intensity was linear versus logarithmic CD81 protein concentration from 0.1 to 10,000 pg mL-1, and the detection limit was 0.067 pg mL-1. Surprisingly, in 30% normal human serum (NHS), the sensor can also detect target protein over 0.1-10,000 pg mL-1, with 0.083 pg mL-1 for the detection limit. Moreover, the proposed biosensor is designed to be cost-effective, making it accessible, particularly in resource-limited settings where expensive detection techniques may not be available. The affordability of this method enables widespread screening and monitoring of preeclampsia, ultimately benefiting many pregnant women by improving their healthcare outcomes. In short, developing of a low-cost and susceptible direct detection method for preeclampsia protein markers, such as CD81, through the use of the immuno-ATRP assay, has significant implications for reducing pregnancy mortality. This method holds promise for early detection, precise treatment, and improved management of preeclampsia, thereby contributing to better maternal and fetal health.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Polimerizacion , Humanos , Femenino , Embarazo , Biomarcadores/análisis , Biomarcadores/sangre , Técnicas Biosensibles/métodos , Preeclampsia/diagnóstico , Preeclampsia/sangre , Tetraspanina 28/análisis , Tetraspanina 28/metabolismo , Inmunoadsorbentes/química , Límite de Detección , Fluorescencia , Ensayo de Inmunoadsorción Enzimática , Eclampsia/diagnóstico
12.
BMC Plant Biol ; 24(1): 389, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38730341

RESUMEN

BACKGROUND: Kobreisa littledalei, belonging to the Cyperaceae family is the first Kobresia species with a reference genome and the most dominant species in Qinghai-Tibet Plateau alpine meadows. It has several resistance genes which could be used to breed improved crop varieties. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) is a popular and accurate gene expression analysis method. Its reliability depends on the expression levels of reference genes, which vary by species, tissues and environments. However, K.littledalei lacks a stable and normalized reference gene for RT-qPCR analysis. RESULTS: The stability of 13 potential reference genes was tested and the stable reference genes were selected for RT-qPCR normalization for the expression analysis in the different tissues of K. littledalei under two abiotic stresses (salt and drought) and two hormonal treatments (abscisic acid (ABA) and gibberellin (GA)). Five algorithms were used to assess the stability of putative reference genes. The results showed a variation amongst the methods, and the same reference genes showed tissue expression differences under the same conditions. The stability of combining two reference genes was better than a single one. The expression levels of ACTIN were stable in leaves and stems under normal conditions, in leaves under drought stress and in roots under ABA treatment. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was stable in the roots under the control conditions and salt stress and in stems exposed to drought stress. Expression levels of superoxide dismutase (SOD) were stable in stems of ABA-treated plants and in the roots under drought stress. Moreover, RPL6 expression was stable in the leaves and stems under salt stress and in the stems of the GA-treated plants. EF1-alpha expression was stable in leaves under ABA and GA treatments. The expression levels of 28 S were stable in the roots under GA treatment. In general, ACTIN and GAPDH could be employed as housekeeping genes for K. littledalei under different treatments. CONCLUSION: This study identified the best RT-qPCR reference genes for different K. littledalei tissues under five experimental conditions. ACTIN and GAPDH genes can be employed as the ideal housekeeping genes for expression analysis under different conditions. This is the first study to investigate the stable reference genes for normalized gene expression analysis of K. littledalei under different conditions. The results could aid molecular biology and gene function research on Kobresia and other related species.


Asunto(s)
Genes de Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones , Plantones/genética , Cyperaceae/genética , Estándares de Referencia , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Sequías , Reproducibilidad de los Resultados , Ácido Abscísico/metabolismo , Giberelinas/metabolismo
13.
Small ; 20(3): e2304839, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37702144

RESUMEN

The construction of nanostructured Z-scheme heterostructure is a powerful strategy for realizing high-performance photoelectrochemical (PEC) devices such as self-powered photodetectors and water splitting. Considering the band structure and internal electric field direction, BiVO4 is a promising candidate to construct SnS2 -based heterostructure. Herein, the direct Z-scheme heterostructure of vertically oriented SnS2 nanosheet on BiVO4 nanoflower is rationally fabricated for efficient self-powered PEC photodetectors. The Z-scheme heterostructure is identified by ultraviolet photoelectron spectroscopy, photoluminescence spectroscopy, PEC measurement, and water splitting. The SnS2 /BiVO4 heterostructure shows a superior photodetection performance such as excellent photoresponsivity (10.43 mA W-1 ), fast response time (6 ms), and long-term stability. Additionally, by virtue of efficient Z-scheme charge transfer and unique light-trapping nanostructure, the SnS2 /BiVO4 heterostructure also displays a remarkable photocatalytic hydrogen production rate of 54.3 µmol cm-2 h-1 in Na2 SO3 electrolyte. Furthermore, the synergistic effect between photo-activation and bias voltage further improves the PEC hydrogen production rate of 360 µmol cm-2 h-1 at 0.8 V, which is an order of magnitude above the BiVO4 . The results provide useful inspiration for designing direct Z-scheme heterostructures with special nanostructured morphology to signally promote the performance of PEC devices.

14.
Small ; 20(12): e2307072, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37940616

RESUMEN

Discovering new deep ultraviolet (DUV) nonlinear optical (NLO) materials is the current research hotspot. However, how to perfectly integrate several stringent performances into a crystal is a great challenge because of the natural incompatibility among them, particularly wide band gap and large NLO coefficient. To tackle the challenge, a boron-rich closed-loop strategy is supposed, based on which a new barium borate, Ba4B14O25, is designed and synthesized successfully via the high-temperature solid-state melting method. It features a highly polymeric 3D geometry with the closed-loop anionic framework [B14O25]8- constructed by the fundamental building blocks [B14O33]24-. The high-density π-conjugated [BO3]3- groups and the fully closed-loop B-O-B connections make Ba4B14O25 possess excellent NLO properties, including short UV cutoff edge (<200 nm), large second harmonic generation response (3.0 × KDP) and phase-matching capability, being a promising DUV-transparent NLO candidate material. The work provides a creative design strategy for the exploration of DUV NLO crystals.

15.
Small ; : e2404622, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058229

RESUMEN

Inspired by natural photosynthesis, the visible-light-driven Z-scheme system is very effective and promising for boosting photocatalytic hydrogen production and pollutant degradation. Here, a synergistic Z-scheme photocatalyst is constructed by coupling ReS2 nanosheet and ZnIn2S4 nanoflower and the experimental evidence for this direct Z-scheme heterostructure is provided by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. Consequently, such a unique nanostructure makes this Z-scheme heterostructure exhibit 23.7 times higher photocatalytic hydrogen production than that of ZnIn2S4 nanoflower. Moreover, the ZnIn2S4/ReS2 photocatalyst is also very stable for photocatalytic hydrogen evolution, almost without activity decay even storing for two weeks. Besides, this Z-scheme heterostructure also exhibits superior photocatalytic degradation rates of methylene blue (1.7 × 10-2 min-1) and mitoxantrone (4.2 × 10-3 min-1) than that of ZnIn2S4 photocatalyst. The ultraviolet-visible absorption spectra, transient photocurrent spectra, open-circuit potential measurement, and electrochemical impedance spectroscopy reveal that the superior photocatalytic performance of ZnIn2S4/ReS2 heterostructure is mostly attributed to its broad and strong visible-light absorption, effective separation of charge carrier, and improved redox ability. This work provides a promising nanostructure design of a visible-light-driven Z-scheme heterostructure to simultaneously promote photocatalytic reduction and oxidation activity.

16.
Nat Methods ; 18(11): 1342-1351, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34711970

RESUMEN

Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies.


Asunto(s)
Encéfalo/metabolismo , Corteza Prefontal Dorsolateral/metabolismo , Genes , Neoplasias Pancreáticas/genética , Programas Informáticos , Transcriptoma , Corteza Visual/metabolismo , Algoritmos , Animales , Análisis por Conglomerados , Biología Computacional , Regulación de la Expresión Génica , Humanos , Ratones , Redes Neurales de la Computación , Neoplasias Pancreáticas/patología , Análisis Espacial
17.
J Exp Bot ; 75(10): 2965-2981, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38452221

RESUMEN

Low temperatures affect flower development in rose (Rosa hybrida), increasing petaloid stamen number and reducing normal stamen number. We identified the low-temperature-responsive R2R3-MYB transcription factor RhMYB17, which is homologous to Arabidopsis MYB17 by similarity of protein sequences. RhMYB17 was up-regulated at low temperatures, and RhMYB17 transcripts accumulated in floral buds. Transient silencing of RhMYB17 by virus-induced gene silencing decreased petaloid stamen number and increased normal stamen number. According to the ABCDE model of floral organ identity, class A genes APETALA 1 (AP1) and AP2 contribute to sepal and petal formation. Transcription factor binding analysis identified RhMYB17 binding sites in the promoters of rose APETALA 2 (RhAP2) and APETALA 2-LIKE (RhAP2L). Yeast one-hybrid assays, dual-luciferase reporter assays, and electrophoretic mobility shift assays confirmed that RhMYB17 directly binds to the promoters of RhAP2 and RhAP2L, thereby activating their expression. RNA sequencing further demonstrated that RhMYB17 plays a pivotal role in regulating the expression of class A genes, and indirectly influences the expression of the class C gene. This study reveals a novel mechanism for the homeotic transformation of floral organs in response to low temperatures.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Rosa , Factores de Transcripción , Rosa/genética , Rosa/metabolismo , Rosa/crecimiento & desarrollo , Rosa/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/crecimiento & desarrollo , Flores/genética , Flores/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Respuesta al Choque por Frío/genética , Frío
18.
Microb Pathog ; 193: 106727, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851362

RESUMEN

Klebsiella pneumoniae is a type of Gram-negative bacterium which can cause a range of infections in human. In recent years, an increasing number of strains of K. pneumoniae resistant to multiple antibiotics have emerged, posing a significant threat to public health. The protein function of this bacterium is not well known, thus a systematic investigation of K. pneumoniae proteome is in urgent need. In this study, the protein functions of this bacteria were re-annotated, and their function groups were analyzed. Moreover, three machine learning models were built to identify novel virulence factors. Results showed that the functions of 16 uncharacterized proteins were first annotated by sequence alignment. In addition, K. pneumoniae proteins share a high proportion of homology with Haemophilus influenzae and a low homology proportion with Chlamydia pneumoniae. By sequence analysis, 10 proteins were identified as potential drug targets for this bacterium. Our model achieved a high accuracy of 0.901 in the benchmark dataset. By applying our models to K. pneumoniae, we identified 39 virulence factors in this pathogen. Our findings could provide novel clues for the treatment of K. pneumoniae infection.


Asunto(s)
Proteínas Bacterianas , Genoma Bacteriano , Klebsiella pneumoniae , Aprendizaje Automático , Factores de Virulencia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/metabolismo , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano/genética , Anotación de Secuencia Molecular , Proteoma , Humanos , Biología Computacional/métodos , Alineación de Secuencia , Infecciones por Klebsiella/microbiología
19.
Plant Cell ; 33(8): 2716-2735, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34043798

RESUMEN

Reactive oxygen species (ROS) are unstable reactive molecules that are toxic to cells. Regulation of ROS homeostasis is crucial to protect cells from dysfunction, senescence, and death. In plant leaves, ROS are mainly generated from chloroplasts and are tightly temporally restricted by the circadian clock. However, little is known about how ROS homeostasis is regulated in nonphotosynthetic organs, such as petals. Here, we showed that hydrogen peroxide (H2O2) levels exhibit typical circadian rhythmicity in rose (Rosa hybrida) petals, consistent with the measured respiratory rate. RNA-seq and functional screening identified a B-box gene, RhBBX28, whose expression was associated with H2O2 rhythms. Silencing RhBBX28 accelerated flower senescence and promoted H2O2 accumulation at night in petals, while overexpression of RhBBX28 had the opposite effects. RhBBX28 influenced the expression of various genes related to respiratory metabolism, including the TCA cycle and glycolysis, and directly repressed the expression of SUCCINATE DEHYDROGENASE 1, which plays a central role in mitochondrial ROS (mtROS) homeostasis. We also found that PHYTOCHROME-INTERACTING FACTOR8 (RhPIF8) could activate RhBBX28 expression to control H2O2 levels in petals and thus flower senescence. Our results indicate that the circadian-controlled RhPIF8-RhBBX28 module is a critical player that controls flower senescence by governing mtROS homeostasis in rose.


Asunto(s)
Flores/fisiología , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rosa/fisiología , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica de las Plantas , Homeostasis , Peróxido de Hidrógeno/metabolismo , Mitocondrias/genética , Proteínas de Plantas/genética , Senescencia de la Planta , Plantas Modificadas Genéticamente , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
20.
Plant Cell ; 33(4): 1229-1251, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33693903

RESUMEN

Flowers are the core reproductive structures and key distinguishing features of angiosperms. Flower opening to expose stamens and gynoecia is important in cases where pollinators much be attracted to promote cross-pollination, which can enhance reproductive success and species preservation. The floral opening process is accompanied by the coordinated movement of various floral organs, particularly petals. However, the mechanisms underlying petal movement and flower opening are not well understood. Here, we integrated anatomical, physiological, and molecular approaches to determine the petal movement regulatory network using rose (Rosa hybrida) as a model. We found that PETAL MOVEMENT-RELATED PROTEIN1 (RhPMP1), a homeodomain transcription factor (TF) gene, is a direct target of ETHYLENE INSENSITIVE3, a TF that functions downstream of ethylene signaling. RhPMP1 expression was upregulated by ethylene and specifically activated endoreduplication of parenchyma cells on the adaxial side of the petal (ADSP) base by inducing the expression of RhAPC3b, a gene encoding the core subunit of the Anaphase-Promoting Complex. Cell expansion of the parenchyma on the ADSP base was subsequently enhanced, thus resulting in asymmetric growth of the petal base, leading to the typical epinastic movement of petals and flower opening. These findings provide insights into the pathway regulating petal movement and associated flower-opening mechanisms.�.


Asunto(s)
Etilenos/metabolismo , Flores/crecimiento & desarrollo , Rosa/crecimiento & desarrollo , Ciclopropanos/farmacología , Etilenos/farmacología , Flores/efectos de los fármacos , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Células Vegetales/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Rosa/efectos de los fármacos , Rosa/genética , Rosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA