Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Clin Cancer Res ; 40(1): 387, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34886901

RESUMEN

BACKGROUND: Mannose, a natural hexose existing in daily food, has been demonstrated to preferentially inhibit the progression of tumors with low expression of phosphate mannose isomerase (PMI). However, its function in thyroid cancer still remains elusive. METHODS: MTT, colony formation and flow cytometry assays were performed to determine the response of thyroid cancer cells to mannose. Meanwhile, mouse models of subcutaneous xenograft and primary papillary thyroid cancer were established to determine in vivo anti-tumor activity of mannose. The underlying mechanism of mannose selectively killing thyroid cancer cells was clarified by a series of molecular and biochemical experiments. RESULTS: Our data demonstrated that mannose selectively suppressed the growth of thyroid cancer cells, and found that enzyme activity of PMI rather than its protein expression was negatively associated with the response of thyroid cancer cells to mannose. Besides, our data showed that zinc ion (Zn2+) chelator TPEN clearly increased the response of mannose-insensitive cells to mannose by inhibiting enzyme activity of PMI, while Zn2+ supplement could effectively reverse this effect. Further studies found that the expression of zinc transport protein ZIP10, which transport Zn2+ from extracellular area into cells, was negatively related to the response of thyroid cancer cells to mannose. Knocking down ZIP10 in mannose-insensitive cells significantly inhibited in vitro and in vivo growth of these cells by decreasing intracellular Zn2+ concentration and enzyme activity of PMI. Moreover, ectopic expression of ZIP10 in mannose-sensitive cells decrease their cellular response to mannose. Mechanistically, mannose exerted its anti-tumor effect by inhibiting cellular glycolysis; however, this effect was highly dependent on expression status of ZIP10. CONCLUSION: The present study demonstrate that mannose selectively kills thyroid cancer cells dependent on enzyme activity of PMI rather than its expression, and provide a mechanistic rationale for exploring clinical use of mannose in thyroid cancer therapy.


Asunto(s)
Isomerasas Aldosa-Cetosa/metabolismo , Proteínas de Transporte de Catión/metabolismo , Fosfatos/metabolismo , Neoplasias de la Tiroides/genética , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones
2.
Theranostics ; 9(15): 4461-4473, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31285773

RESUMEN

Background: Vitamin C has been demonstrated to kill BRAF mutant colorectal cancer cells selectively. BRAF mutation is the most common genetic alteration in thyroid tumor development and progression; however, the antitumor efficacy of vitamin C in thyroid cancer remains to be explored. Methods: The effect of vitamin C on thyroid cancer cell proliferation and apoptosis was assessed by the MTT assay and flow cytometry. Xenograft and transgenic mouse models were used to determine its in vivo antitumor activity of vitamin C. Molecular and biochemical methods were used to elucidate the underlying mechanisms of anticancer activity of vitamin C in thyroid cancer. Results: Pharmaceutical concentration of vitamin C significantly inhibited thyroid cancer cell proliferation and induced cell apoptosis regardless of BRAF mutation status. We demonstrated that the elevated level of Vitamin C in the plasma following a high dose of intraperitoneal injection dramatically inhibited the growth of xenograft tumors. Similar results were obtained in the transgenic mouse model. Mechanistically, vitamin C eradicated BRAF wild-type thyroid cancer cells through ROS-mediated decrease in the activity of EGF/EGFR-MAPK/ERK signaling and an increase in AKT ubiquitination and degradation. On the other hand, vitamin C exerted its antitumor activity in BRAF mutant thyroid cancer cells by inhibiting the activity of ATP-dependent MAPK/ERK signaling and inducing proteasome degradation of AKT via the ROS-dependent pathway. Conclusions: Our data demonstrate that vitamin C kills thyroid cancer cells by inhibiting MAPK/ERK and PI3K/AKT pathways via a ROS-dependent mechanism and suggest that pharmaceutical concentration of vitamin C has potential clinical use in thyroid cancer therapy.


Asunto(s)
Ácido Ascórbico/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Tiroides/enzimología , Neoplasias de la Tiroides/patología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Ratones Desnudos , Ratones Transgénicos , Mutación/genética , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/genética , Ubiquitinación/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Oncotarget ; 8(54): 92275-92288, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29190914

RESUMEN

The aim of this study was to investigate copy number of ErbB family members (including EGFR, HER2, HER3 and HER4) in a cohort of gliomas and benign meningiomas (control subjects), and explore the associations of their copy number with clinicopathological characteristics and clinical outcomes of glioma patients. Using real-time quantitative PCR assay, we demonstrated that copy number of EGFR, HER2, HER3 and HER4 in glioma patients was significantly increased compared to control subjects. Moreover, our data also showed that the risk of cancer-related death was positively associated with copy number gain (CNG) of EGFR, HER3 and HER4, but not HER2. CNG of EGFR and HER2 was positively related to radiotherapy, while CNG of HER3 and HER4 was negatively related to chemotherapy. Importantly, EGFR CNG significantly shortened median survival times of glioma patients regardless of gender, tumor grade and therapeutic regimens. Stratified analysis showed that CNG of HER2-4 almost did not influence the survival of male patients, patients with high-grade tumors and patients receiving chemotherapy, but dramatically shortened median survival times of female patients, those with low-grade tumors and those receiving radiotherapy. Collectively, our data not only demonstrate that the members of ErbB family are frequently amplified in gliomas, but also suggest that these common genetic events may be prognostic factors for poor clinical outcomes in glioma patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA