Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chembiochem ; 25(3): e202300744, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055188

RESUMEN

Hirudins, natural sulfo(glyco)proteins, are clinical anticoagulants that directly inhibit thrombin, a key coagulation factor. Their potent thrombin inhibition primarily results from antagonistic interactions with both the catalytic and non-catalytic sites of thrombin. Hirudins often feature sulfate moieties on Tyr residues in their anionic C-terminus region, enabling strong interactions with thrombin exosite-I and effectively blocking its engagement with fibrinogen. Although sulfotyrosines have been identified in various hirudin variants, the precise relationship between sulfotyrosine and the number of negatively charged amino acids within the anionic-rich C-terminus peptide domain for the binding of thrombin has remained elusive. By using Fmoc-SPPS, hirudin dodecapeptides homologous to the C-terminus of hirudin variants from various leech species were successfully synthesized, and the effect of sulfotyrosine and the number of negatively charged amino acids on hirudin-thrombin interactions was investigated. Our findings did not reveal any synergistic effect between an increasing number of sulfotyrosines or negatively charged amino acids and their inhibitory activity on thrombin or fibrinolysis in the assays, despite a higher binding level toward thrombin in the sulfated dodecapeptide Hnip_Hirudin was observed in SPR analysis.


Asunto(s)
Hirudinas , Trombina , Tirosina/análogos & derivados , Hirudinas/farmacología , Hirudinas/química , Hirudinas/metabolismo , Aminoácidos , Péptidos/farmacología , Sitios de Unión
2.
Proc Natl Acad Sci U S A ; 112(40): 12288-92, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26372957

RESUMEN

Plasmonic cavities represent a promising platform for controlling light-matter interaction due to their exceptionally small mode volume and high density of photonic states. Using plasmonic cavities for enhancing light's coupling to individual two-level systems, such as single semiconductor quantum dots (QD), is particularly desirable for exploring cavity quantum electrodynamic (QED) effects and using them in quantum information applications. The lack of experimental progress in this area is in part due to the difficulty of precisely placing a QD within nanometers of the plasmonic cavity. Here, we study the simplest plasmonic cavity in the form of a spherical metallic nanoparticle (MNP). By controllably positioning a semiconductor QD in the close proximity of the MNP cavity via atomic force microscope (AFM) manipulation, the scattering spectrum of the MNP is dramatically modified due to Fano interference between the classical plasmonic resonance of the MNP and the quantized exciton resonance in the QD. Moreover, our experiment demonstrates that a single two-level system can render a spherical MNP strongly anisotropic. These findings represent an important step toward realizing quantum plasmonic devices.

3.
Nano Lett ; 16(7): 4322-8, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27332701

RESUMEN

The smallness of natural molecules and atoms with respect to the wavelength of light imposes severe limits on the nature of their optical response. For example, the well-known argument of Landau and Lifshitz and its recent extensions that include chiral molecules show that the electric dipole response dominates over the magneto-electric (bianisotropic) and an even smaller magnetic dipole optical response for all natural materials. Here, we experimentally demonstrate that both these responses can be greatly enhanced in plasmonic nanoclusters. Using atomic force microscopy nanomanipulation technique, we assemble a plasmonic metamolecule that is designed for strong and simultaneous optical magnetic and magneto-electric excitation. Angle-dependent scattering spectroscopy is used to disentangle the two responses and to demonstrate that their constructive/destructive interplay causes strong directional scattering asymmetry. This asymmetry is used to extract both magneto-electric and magnetic dipole responses and to demonstrate their enhancement in comparison to ordinary atomistic materials.

4.
Phys Rev Lett ; 114(23): 237403, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26196826

RESUMEN

Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.

5.
Phys Rev Lett ; 114(12): 127401, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25860770

RESUMEN

The wave nature of radiation prevents its reflections-free propagation around sharp corners. We demonstrate that a simple photonic structure based on a periodic array of metallic cylinders attached to one of the two confining metal plates can emulate spin-orbit interaction through bianisotropy. Such a metawaveguide behaves as a photonic topological insulator with complete topological band gap. An interface between two such structures with opposite signs of the bianisotropy supports topologically protected surface waves, which can be guided without reflections along sharp bends of the interface.

6.
Sci Adv ; 10(25): eadj4064, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905348

RESUMEN

Inference-based decision-making, which underlies a broad range of behavioral tasks, is typically studied using a small number of handcrafted models. We instead enumerate a complete ensemble of strategies that could be used to effectively, but not necessarily optimally, solve a dynamic foraging task. Each strategy is expressed as a behavioral "program" that uses a limited number of internal states to specify actions conditioned on past observations. We show that the ensemble of strategies is enormous-comprising a quarter million programs with up to five internal states-but can nevertheless be understood in terms of algorithmic "mutations" that alter the structure of individual programs. We devise embedding algorithms that reveal how mutations away from a Bayesian-like strategy can diversify behavior while preserving performance, and we construct a compositional description to link low-dimensional changes in algorithmic structure with high-dimensional changes in behavior. Together, this work provides an alternative approach for understanding individual variability in behavior across animals and tasks.


Asunto(s)
Algoritmos , Teorema de Bayes , Toma de Decisiones , Animales , Conducta Animal , Humanos
7.
ACS Chem Biol ; 19(7): 1515-1524, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38912881

RESUMEN

Eliminating the core fucose from the N-glycans of the Fc antibody segment by pathway engineering or enzymatic methods has been shown to enhance the potency of therapeutic antibodies, especially in the context of antibody-dependent cytotoxicity (ADCC). However, there is a significant challenge due to the limited defucosylation efficiency of commercially available α-l-fucosidases. In this study, we report a unique α-l-fucosidase (PnfucA) from the bacterium Prevotella nigrescens that has a low sequence identity compared with all other known α-l-fucosidases and is highly reactive toward a core disaccharide substrate with fucose α(1,3)-, α (1,4)-and α(1,6)-linked to GlcNAc, and is less reactive toward the Fuc-α(1,2)-Gal on the terminal trisaccharide of the oligosaccharide Globo H (Bb3). The kinetic properties of the enzyme, such as its Km and kcat, were determined and the optimized expression of PnfucA gave a yield exceeding 30 mg/L. The recombinant enzyme retained its full activity even after being incubated for 6 h at 37 °C. Moreover, it retained 92 and 87% of its activity after freezing and freeze-drying treatments, respectively, for over 28 days. In a representative glycoengineering of adalimumab (Humira), PnfucA showed remarkable hydrolytic efficiency in cleaving the α(1,6)-linked core fucose from FucGlcNAc on the antibody with a quantitative yield. This enabled the seamless incorporation of biantennary sialylglycans by Endo-S2 D184 M in a one-pot fashion to yield adalimumab in a homogeneous afucosylated glycoform with an improved binding affinity toward Fcγ receptor IIIa.


Asunto(s)
alfa-L-Fucosidasa , alfa-L-Fucosidasa/metabolismo , alfa-L-Fucosidasa/química , Humanos , Glicosilación , Ingeniería de Proteínas , Prevotella/enzimología , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA