RESUMEN
Banyan trees are distinguished by their extraordinary aerial roots. The Ficus genus includes species that have evolved a species-specific mutualism system with wasp pollinators. We sequenced genomes of the Chinese banyan tree, F. microcarpa, and a species lacking aerial roots, F. hispida, and one wasp genome coevolving with F. microcarpa, Eupristina verticillata. Comparative analysis of the two Ficus genomes revealed dynamic karyotype variation associated with adaptive evolution. Copy number expansion of auxin-related genes from duplications and elevated auxin production are associated with aerial root development in F. microcarpa. A male-specific AGAMOUS paralog, FhAG2, was identified as a candidate gene for sex determination in F. hispida. Population genomic analyses of Ficus species revealed genomic signatures of morphological and physiological coadaptation with their pollinators involving terpenoid- and benzenoid-derived compounds. These three genomes offer insights into and genomic resources for investigating the geneses of aerial roots, monoecy and dioecy, and codiversification in a symbiotic system.
Asunto(s)
Evolución Biológica , Ficus/genética , Genoma de Planta , Polinización/fisiología , Árboles/genética , Avispas/fisiología , Animales , Cromosomas de las Plantas/genética , Elementos Transponibles de ADN/genética , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Anotación de Secuencia Molecular , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Duplicaciones Segmentarias en el Genoma/genética , Cromosomas Sexuales/genética , Compuestos Orgánicos Volátiles/análisisRESUMEN
Despite extensive research on orchid reproductive strategies, the genetic studies of sex differentiation in the orchid family are still lacking. In this study, we compared three sexual phenotypes of Cymbidium tortisepalum bisexual flowers as well as female and male unisexual mutants. Through comparative transcriptomes, we analyzed the sex-biased differentially expressed genes (DEGs) and gene co-expression networks of sex organs (gynostemium and ovary) among them, identified the candidate genes of sex differentiation, and validated their expression by qRT-PCR. The C. tortisepalum unisexual mutants with degenerated phenotypes were compared to the bisexual plants with respect to both the flower organs and plant morphologies. Totally, 12,145, 10,789, and 14,447 genes were uniquely expressed in the female, male, and hermaphrodite sex organs, respectively. A total of 4291 sex-biased DEGs were detected among them, with 871, 2867, and 1937 DEGs in the comparisons of bisexual vs. female, bisexual vs. male, and male vs. female flowers, respectively. Two co-expressed network modules, with 81 and 419 genes were tightly correlated with female sexual traits, while two others with 265 and 135 genes were highly correlated with male sexual traits. Two female-biased hub genes (CtSDR3b and CtSDR3b-like) nested in the female modules, the homologs of maize sex determinant tasselseed2, may control the feminization of C. tortisepalum. At the same time, two male-biased hub genes (CtYAB2 and CtYAB5) nested in the male modules, the homologs of grape sex determinant VviYABBY3, may control the androphany of C. tortisepalum. This study discovered the molecular regulation networks and proposed a model for orchid sex differentiation, therefore providing for the first time the genetic basis for the sex separation in the orchid family.
Asunto(s)
Orchidaceae , Minorías Sexuales y de Género , Femenino , Humanos , Transcriptoma , Redes Reguladoras de Genes , Flores/genética , Orchidaceae/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión GénicaRESUMEN
Rambutan is a popular tropical fruit known for its exotic appearance, has long flexible spines on shells, extraordinary aril growth, desirable nutrition, and a favorable taste. The genome of an elite rambutan cultivar Baoyan 7 was assembled into 328 Mb in 16 pseudo-chromosomes. Comparative genomics analysis between rambutan and lychee revealed that rambutan chromosomes 8 and 12 are collinear with lychee chromosome 1, which resulted in a chromosome fission event in rambutan (n = 16) or a fusion event in lychee (n = 15) after their divergence from a common ancestor 15.7 million years ago. Root development genes played a crucial role in spine development, such as endoplasmic reticulum pathway genes, jasmonic acid response genes, vascular bundle development genes, and K+ transport genes. Aril development was regulated by D-class genes (STK and SHP1), plant hormone and phenylpropanoid biosynthesis genes, and sugar metabolism genes. The lower rate of male sterility of hermaphroditic flowers appears to be regulated by MYB24. Population genomic analyses revealed genes in selective sweeps during domestication that are related to fruit morphology and environment stress response. These findings enhance our understanding of spine and aril development and provide genomic resources for rambutan improvement.
Asunto(s)
Frutas/genética , Redes Reguladoras de Genes/genética , Genoma de Planta/genética , Sapindaceae/genética , Transcriptoma , Adaptación Fisiológica , Domesticación , Flores/genética , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Genómica , Glucósidos/biosíntesis , Taninos Hidrolizables , Anotación de Secuencia Molecular , Fotosíntesis , Sapindaceae/crecimiento & desarrollo , Especificidad de la Especie , GustoRESUMEN
Malvids is one of the largest clades of rosids, includes 58 families and exhibits remarkable morphological and ecological diversity. Here, we report a high-quality chromosome-level genome assembly for Euscaphis japonica, an early-diverging species within malvids. Genome-based phylogenetic analysis suggests that the unstable phylogenetic position of E. japonica may result from incomplete lineage sorting and hybridization event during the diversification of the ancestral population of malvids. Euscaphis japonica experienced two polyploidization events: the ancient whole genome triplication event shared with most eudicots (commonly known as the γ event) and a more recent whole genome duplication event, unique to E. japonica. By resequencing 101 samples from 11 populations, we speculate that the temperature has led to the differentiation of the evergreen and deciduous of E. japonica and the completely different population histories of these two groups. In total, 1012 candidate positively selected genes in the evergreen were detected, some of which are involved in flower and fruit development. We found that reddening and dehiscence of the E. japonica pericarp and long fruit-hanging time promoted the reproduction of E. japonica populations, and revealed the expression patterns of genes related to fruit reddening, dehiscence and abscission. The key genes involved in pentacyclic triterpene synthesis in E. japonica were identified, and different expression patterns of these genes may contribute to pentacyclic triterpene diversification. Our work sheds light on the evolution of E. japonica and malvids, particularly on the diversification of E. japonica and the genetic basis for their fruit dehiscence and abscission.
Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Magnoliopsida/genética , Frutas/genéticaRESUMEN
BACKGROUND: Pollination accelerate sepal development that enhances plant fitness by protecting seeds in female spinach. This response requires pollination signals that result in the remodeling within the sepal cells for retention and development, but the regulatory mechanism for this response is still unclear. To investigate the early pollination-induced metabolic changes in sepal, we utilize the high-throughput RNA-seq approach. RESULTS: Spinach variety 'Cornel 9' was used for differentially expressed gene analysis followed by experiments of auxin analog and auxin inhibitor treatments. We first compared the candidate transcripts expressed differentially at different time points (12H, 48H, and 96H) after pollination and detected significant difference in Trp-dependent auxin biosynthesis and auxin modulation and transduction process. Furthermore, several auxin regulatory pathways i.e. cell division, cell wall expansion, and biogenesis were activated from pollination to early developmental symptoms in sepals following pollination. To further confirm the role auxin genes play in the sepal development, auxin analog (2, 4-D; IAA) and auxin transport inhibitor (NPA) with different concentrations gradient were sprayed to the spinach unpollinated and pollinated flowers, respectively. NPA treatment resulted in auxin transport weakening that led to inhibition of sepal development at concentration 0.1 and 1 mM after pollination. 2, 4-D and IAA treatment to unpollinated flowers resulted in sepal development at lower concentration but wilting at higher concentration. CONCLUSION: We hypothesized that sepal retention and development might have associated with auxin homeostasis that regulates the sepal size by modulating associated pathways. These findings advanced the understanding of this unusual phenomenon of sepal growth instead of abscission after pollination in spinach.
Asunto(s)
Flores/crecimiento & desarrollo , Expresión Génica/fisiología , Ácidos Indolacéticos/administración & dosificación , Polinización , Spinacia oleracea/metabolismo , Flores/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , RNA-Seq , Spinacia oleracea/genética , Spinacia oleracea/crecimiento & desarrolloRESUMEN
Spinach (Spinacia olracea L.) is a dioecious leafy vegetable with a highly repetitive genome of around 990 Mb, which is challenging for de-novo genome assembly. In our study, a segregating F1 (double pseudo-testcross) population from 'Viroflay' × 'Cornell-NO. 9' was used for genetic mapping by resequencing genotyping. In the paternal 'Cornell-NO. 9' map, 212,414 SNPs were mapped, and the total linkage distance was 476.83 cM; the maternal 'Viroflay' map included 29,282 SNPs with 401.28 cM total genetic distance. Both paternal and maternal maps have the expected number of six linkage groups (LGs). A non-recombining region with 5678 SNPs (39 bin markers) co-segregates with sex type which located at 45.2 cM of LG1 in the 'Cornell-NO. 9' map while indicates the sex determination region (SDR). Integration of two maps into a consensus map guided us to anchor additional 1242 contigs to six pseudomolecules from the published reference genome, which improved additional 233 Mb (23.4%) assembly based on spinach estimated genome size. Particularly, the X counterpart of SDR in our assembly is estimated around 18.4 Mb which locates at the largest chromosome, as consensus with sex-biased FISH signals from previous cytogenetics studies. The region is featured by reduced gene density, higher percentage of repetitive sequences, and no recombination. Our linkage maps provide the resource for improving spinach genome de-novo assembly and identification of sex-determining genes in spinach.
Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de las Plantas/química , Genoma de Planta , Spinacia oleracea/genética , Cruzamientos Genéticos , Ligamiento Genético , Tamaño del Genoma , Cariotipificación , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Procesos de Determinación del SexoRESUMEN
Cultivated jute, which comprises the two species Corchorus capsularis and C. olitorius, is the second most important natural fibre source after cotton. Here we describe chromosome-level assemblies of the genomes of both cultivated species. The C. capsularis and C. olitorius assemblies are each comprised of seven pseudo-chromosomes, with the C. capsularis assembly consisting of 336 Mb with 25,874 genes and the C. olitorius assembly containing 361 Mb with 28 479 genes. Although the two Corchorus genomes exhibit collinearity, the genome of C. olitorius contains 25 Mb of additional sequences than that of C. capsularis with 13 putative inversions, which might give a hint to the difference of phenotypic variants between the two cultivated jute species. Analysis of gene expression in isolated fibre tissues reveals candidate genes involved in fibre development. Our analysis of the population structures of 242 cultivars from C. capsularis and 57 cultivars from C. olitorius by whole-genome resequencing resulted in post-domestication bottlenecks occurred ~2000 years ago in these species. We identified hundreds of putative significant marker-trait associations (MTAs) controlling fibre fineness, cellulose content and lignin content of fibre by integrating data from genome-wide association studies (GWAS) with data from analyses of selective sweeps due to natural and artificial selection in these two jute species. Among them, we further validated that CcCOBRA1 and CcC4H1 regulate fibre quality in transgenic plants via improving the biosynthesis of the secondary cell wall. Our results yielded important new resources for functional genomics research and genetic improvement in jute and allied fibre crops.
Asunto(s)
Corchorus , Corchorus/genética , Estudio de Asociación del Genoma Completo , Genómica , Lignina , Análisis de Secuencia de ADNRESUMEN
Kenaf is an annual crop that is widely cultivated as a source of bast (phloem) fibres, the phytoremediation of heavy metal-contaminated farmlands and textile-relevant compounds. Leaf shape played a unique role in kenaf improvement, due to the inheritance as a single locus and the association with fibre development in typical lobed-leaf varieties. Here we report a high-quality genome assembly and annotation for var. 'Fuhong 952' with 1078 Mbp genome and 66 004 protein-coding genes integrating single-molecule real-time sequencing, a high-density genetic map and high-throughput chromosome conformation capture techniques. Gene mapping assists the identification of a homeobox transcription factor LATE MERISTEM IDENTITY 1 (HcLMI1) gene controlling lobed-leaf. Virus-induced gene silencing (VIGS) of HcLMI1 in a lobed-leaf variety was critical to induce round (entire)-like leaf formation. Candidate genes involved in cell wall formation were found in quantitative trait loci (QTL) for fibre yield and quality-related traits. Comparative genomic and transcriptome analyses revealed key genes involved in bast fibre formation, among which there are twice as many cellulose synthase A (CesA) genes due to a recent whole-genome duplication after divergence from Gossypium. Population genomic analysis showed two recent population bottlenecks in kenaf, suggesting domestication and improvement process have led to an increase in fibre biogenesis and yield. This chromosome-scale genome provides an important framework and toolkit for sequence-directed genetic improvement of fibre crops.
Asunto(s)
Hibiscus , Mapeo Cromosómico , Gossypium/genética , Hibiscus/genética , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo/genéticaRESUMEN
KEY MESSAGE: A novel tetraploid S. spontaneum with basic chromosome x = 10 was discovered, providing us insights in the origin and evolution in Saccharum species. Sugarcane (Saccharum spp., Poaceae) is a leading crop for sugar production providing 80% of the world's sugar. However, the genetic and genomic complexities of this crop such as its high polyploidy level and highly variable chromosome numbers have significantly hindered the studies in deciphering the genomic structure and evolution of sugarcane. Here, we developed the first set of oligonucleotide (oligo)-based probes based on the S. spontaneum genome (x = 8), which can be used to simultaneously distinguish each of the 64 chromosomes of octaploid S. spontaneum SES208 (2n = 8x = 64) through fluorescence in situ hybridization (FISH). By comparative FISH assay, we confirmed the chromosomal rearrangements of S. spontaneum (x = 8) and S. officinarum (2n = 8x = 80), the main contributors of modern sugarcane cultivars. In addition, we examined a S. spontaneum accession, Np-X, with 2n = 40 chromosomes, and we found that it was a tetraploid with the unusual basic chromosome number of x = 10. Assays at the cytological and DNA levels demonstrated its close relationship with S. spontaneum with basic chromosome number x = 8 (the most common accessions in S. spontaneum), confirming its S. spontaneum identity. Population genetic structure and phylogenetic relationship analyses between Np-X and 64 S. spontaneum accessions revealed that Np-X belongs to the ancient Pan-Malaysia group, indicating a close relationship to S. spontaneum with basic chromosome number of x = 8. This finding of a tetraploid S. spontaneum with basic chromosome number of x = 10 suggested a parallel evolution path of genomes and polyploid series in S. spontaneum with different basic chromosome numbers.
Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Genoma de Planta , Saccharum/genética , Ecotipo , Reordenamiento Génico/genética , Genética de Población , Hibridación Fluorescente in Situ , Cariotipificación , Metafase/genética , Filogenia , Análisis de Secuencia de ADN , Factores de TiempoRESUMEN
BACKGROUND Anoectochilus roxburghii (Orchidaceae) (AR) has been widely used to treat liver injury in China, but its underlying mechanisms remain elusive. Network pharmacology was utilized to assess the hepatoprotective effects of quercetin (Que)-containing AR, and to validate the anti-liver injury effects of Que in a mouse model of liver injury. MATERIAL AND METHODS Network pharmacology analysis was performed to determine bio-active compounds in AR. The core therapeutic targets of AR against liver injury were identified using a protein-protein interaction network. Biological function and pathway enrichment were analyzed based on the identified core therapeutic targets. The hepatoprotective effects of Que in a mouse model of liver injury induced by CCl4 were assessed to verify the reliability of network pharmacology analysis. RESULTS Seven bio-active compounds of AR met drug screening criteria and 17 core therapeutic targets of AR against liver injury were identified. Biological function analysis demonstrated that the therapeutic effects of AR against liver injury were chiefly associated with the suppression of inflammation and immunity; and pathway enrichment analysis showed that nuclear factor-kappa B (NF-kappaB) and tumor necrosis factor (TNF) signaling pathways were associated with the inflammatory responses. Experimental validation in a mouse model showed that AR exerted anti-inflammatory effects by regulating the NF-kappaB signaling pathway, a finding that also confirmed the reliability of network pharmacology analysis. CONCLUSIONS The bio-active compounds identified in AR and the elucidation of their mechanisms of action against liver injury provide a theoretical basis for designing agents that can prevent or suppress liver injury.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Orchidaceae , Quercetina/farmacología , Animales , Antioxidantes/farmacología , Intoxicación por Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Modelos Animales de Enfermedad , Evaluación de Medicamentos , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Ratones , Sustancias Protectoras/farmacología , Mapas de Interacción de ProteínasRESUMEN
Sugarcane (Saccharum spp.) is a highly energy-efficient crop primarily for sugar and bio-ethanol production. Sugarcane genetics and cultivar improvement have been extremely challenging largely due to its complex genomes with high polyploidy levels. In this study, we deeply sequenced the coding regions of 307 sugarcane germplasm accessions. Nearly five million sequence variations were catalogued. The average of 98× sequence depth enabled different allele dosages of sequence variation to be differentiated in this polyploid collection. With selected high-quality genome-wide SNPs, we performed population genomic studies and environmental association analysis. Results illustrated that the ancient sugarcane hybrids, S. barberi and S. sinense, and modern sugarcane hybrids are significantly different in terms of genomic compositions, hybridization processes and their potential ancestry contributors. Linkage disequilibrium (LD) analysis showed a large extent of LD in sugarcane, with 962.4 Kbp, 2739.2 Kbp and 3573.6 Kbp for S. spontaneum, S. officinarum and modern S. hybrids respectively. Candidate selective sweep regions and genes were identified during domestication and historical selection processes of sugarcane in addition to genes associated with environmental variables at the original locations of the collection. This research provided an extensive amount of genomic resources for sugarcane community and the in-depth population genomic analyses shed light on the breeding and evolution history of sugarcane, a highly polyploid species.
Asunto(s)
Genoma de Planta/genética , Genómica , Saccharum/genética , Adaptación Fisiológica , Alelos , Quimera , Variación Genética , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple/genética , Poliploidía , Saccharum/fisiologíaRESUMEN
Tumor-associated macrophages (TAMs) in the tumor microenvironment have been associated with enhanced tumor progression. In this study, we investigated the role and molecular mechanisms of MALAT1 in TAMs derived from thyroid cancer. The expression of MALAT1 and FGF2 in thyroid cancer tissues and cells were measured by quantitative real-time PCR and Western blot. TAMs were transfected with indicated constructs. Then the culture medium (CM) from TAMs was harvested for assay. Secreted FGF2 protein levels and TNF-α, IL-12, and IL-10 levels were detected by ELISA. The cell proliferation, migration, and invasion of FTC133 cells were determined with a CCK-8 assay and a Transwell assay, respectively. In addition, HUVEC vasculature formation was measured by matrigel angiogenesis assay. The higher levels of MALAT-1 and FGF2 were observed in thyroid cancer tissues and in thyroid cancer cells compared to that in the control. Besides, in the presence of si-MALAT1, the levels of TNF-α and IL-12 were significantly up-regulated whereas IL-10 was down-regulated in the CM from TAMs. Moreover, down-regulation of MALAT1 in TAMs reduced proliferation, migration, and invasion of FTC133 cells and inhibited angiogenesis. However, overexpression of FGF2 blocked the effects of MALAT1 siRNAs on cell migration, invasion, and angiogenesis. Our results suggest that MALAT1-mediated FGF2 protein secretion from TAMs inhibits inflammatory cytokines release, promotes proliferation, migration, and invasion of FTC133 cells and induces vasculature formation. J. Cell. Biochem. 118: 4821-4830, 2017. © 2017 Wiley Periodicals, Inc.
Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Neoplasias de la Tiroides/metabolismo , Anciano , Línea Celular Tumoral , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Macrófagos/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Neovascularización Patológica/genética , Neovascularización Patológica/patología , ARN Largo no Codificante/genética , ARN Neoplásico/genética , Neoplasias de la Tiroides/irrigación sanguínea , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patologíaRESUMEN
By emitting strong scents resembling rotting organic materials suitable for oviposition and/or foraging of flies, sapromyiophilous flowers mimic the substrates that attract flies as pollinators. It has been suggested that the wide range of volatile organic compounds emitted by this deceptive pollination system reflects the trophic preferences of flies to different types of substrate, including herbivore and carnivore feces, carrion, and fruiting bodies of fungi. Previous studies suggest that floral scents play a particularly important role in sapromyiophily. However, few studies on the relative importance of floral color or synergy between visual and olfactory cues in sapromyiophily have been substantiated. In this study, we analyzed fetid floral odor, floral pigment composition, and reflectance of an Amorphophallus konjac C. Koch inflorescence, and we conducted bioassays with different visual and/or olfactory cues to explore an unsubstantiated color profile in sapromyiophily: mimicking livor mortis. Our analysis showed A. konjac can emit oligosulphide-dominated volatile blends similar to those emitted by carrion. Necrophagous flies cannot discriminate between the color of an inflorescence, livor mortis, and floral pigments. We concluded that mimicking livor mortis may represent a common tactic of pollinator attraction in "carrion flower" systems within angiosperms.
Asunto(s)
Amorphophallus/química , Amorphophallus/fisiología , Dípteros/fisiología , Flores/química , Flores/fisiología , Odorantes/análisis , Pigmentos Biológicos/análisis , Polinización , Compuestos Orgánicos Volátiles/análisis , Animales , Femenino , Masculino , Cambios Post MortemRESUMEN
Evolution of unisexual flowers involves extreme changes in floral development. Spinach is one of the species to discern the formation and evolution of dioecy. MADS-box gene family is involved in regulation of floral organ identity and development and in many other plant developmental processes. However, there is no systematic analysis of MADS-box family genes in spinach. A comprehensive genome-wide analysis and transcriptome profiling of MADS-box genes were undertaken to understand their involvement in unisexual flower development at different stages in spinach. In total, 54 MADS-box genes found to be unevenly located across 6 chromosomes and can be divided into type I and type II genes. Twenty type I MADS-box genes are subdivided into Mα, Mß and Mγ subgroups. While thirty-four type II SoMADSs consist of 3 MIKC*, and 31 MIKCC -type genes including sixteen floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in spinach. Gene structure, motif distribution, physiochemical properties, gene duplication and collinearity analyses for these genes are performed in detail. Promoters of both types of SoMADS genes contain mainly MeJA and ABA response elements. Expression profiling indicated that MIKCc genes exhibited more dynamic and intricate expression patterns compared to M-type genes and the majority of type-II genes AP1, SVP, and SOC1 sub-groups showed female flower-biased expression profiles, suggesting their role in carpel development, while PI showed male-biased expression throughout flower developmental stages, suggesting their role in stamen development. These results provide genomic resources and insights into spinach dioecious flower development and expedite spinach improvement.
Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Spinacia oleracea , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Spinacia oleracea/genética , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Estudio de Asociación del Genoma Completo , Duplicación de GenRESUMEN
Oolong tea has gained great popularity in China due to its pleasant floral and fruity aromas. Although numerous studies have investigated the aroma differences across various tea cultivars, the genetic mechanism is unclear. This study performed multiomics analysis of three varieties suitable for oolong tea and three others with different processing suitability. Our analysis revealed that oolong tea varieties contained higher levels of cadinane sesquiterpenoids. PanTFBS was developed to identify variants of transcription factor binding sites (TFBSs). We found that the CsDCS gene had two TFBS variants in the promoter sequence and a single nucleotide polymorphism (SNP) in the coding sequence. Integrating data on genetic variations, gene expression, and protein-binding sites indicated that CsDCS might be a pivotal gene involved in the biosynthesis of cadinane sesquiterpenoids. These findings advance our understanding of the genetic factors involved in the aroma formation of oolong tea and offer insights into the enhancement of tea aroma.
Asunto(s)
Camellia sinensis , Sesquiterpenos , Compuestos Orgánicos Volátiles , Camellia sinensis/genética , Camellia sinensis/química , Multiómica , Hojas de la Planta/química , Compuestos Orgánicos Volátiles/metabolismo , Sesquiterpenos Policíclicos/análisis , Sesquiterpenos Policíclicos/metabolismo , Sesquiterpenos/metabolismo , Té/químicaRESUMEN
Pistachio is a nut crop domesticated in the Fertile Crescent and a dioecious species with ZW sex chromosomes. We sequenced the genomes of Pistacia vera cultivar (cv.) Siirt, the female parent, and P. vera cv. Bagyolu, the male parent. Two chromosome-level reference genomes of pistachio were generated, and Z and W chromosomes were assembled. The ZW chromosomes originated from an autosome following the first inversion, which occurred approximately 8.18 Mya. Three inversion events in the W chromosome led to the formation of a 12.7-Mb (22.8% of the W chromosome) non-recombining region. These W-specific sequences contain several genes of interest that may have played a pivotal role in sex determination and contributed to the initiation and evolution of a ZW sex chromosome system in pistachio. The W-specific genes, including defA, defA-like, DYT1, two PTEN1, and two tandem duplications of six VPS13A paralogs, are strong candidates for sex determination or differentiation. Demographic history analysis of resequenced genomes suggest that cultivated pistachio underwent severe domestication bottlenecks approximately 7640 years ago, dating the domestication event close to the archeological record of pistachio domestication in Iran. We identified 390, 211, and 290 potential selective sweeps in 3 cultivar subgroups that underlie agronomic traits such as nut development and quality, grafting success, flowering time shift, and drought tolerance. These findings have improved our understanding of the genomic basis of sex determination/differentiation and horticulturally important traits and will accelerate the improvement of pistachio cultivars and rootstocks.
Asunto(s)
Pistacia , Pistacia/genética , Árboles/genética , Nueces , Domesticación , Cromosomas Sexuales/genéticaRESUMEN
Spinach is a common vegetable, and dioecy is maintained by a pair of XY sex chromosomes. Due to limited genomic resources and its highly repetitive genome, limited studies were conducted to investigate the genomic landscape of the region near sex-determining loci. In this study, we screened the structure variations (SVs) between Y-linked contigs and a 1.78-Mb X scaffold (Super_scaffold 66), which enabled the development of 12 sex co-segregating DNA markers. These markers were tested in one F1 mapping population and 40 spinach accessions, which comprised 692 individual plants with the strong sex linkage pattern. In addition, we found that Super_scaffold 66 was highly repetitive along with the enriched LTR-RTs insertions and decreased microsatellite distribution compared with the rest genome, which matches extremely low gene density featured by only nine annotated genes. Synteny analysis between Y contigs and Superscaffold_66 revealed a 340-Kb accumulative Y contig (non-continuous) and a 500-Kb X counterpart along with SVs and wide-spread tandem duplications. Among the nine genes, one ABC transporter gene revealed noticeable SVs between Y contig and X counterpart, as an approximate 5-Kb recent Gypsy LTR-RT insertion in the Y-linked allele, but not the X allele. The gene paucity, SVs, and sex-linked polymorphisms attributed to the recombination suppression. We proposed that Super_scaffold 66 is part of the non-recombining region containing the sex determination genes. The spread of 12 sex co-segregating markers from this 1.78 Mb genomic region indicated the existence and expansion of sex determination region during progression of the Y chromosome.
Asunto(s)
Cromosomas de las Plantas , Spinacia oleracea , Cromosomas de las Plantas/genética , Ligamiento Genético , Procesos de Determinación del Sexo , Spinacia oleracea/genética , SinteníaRESUMEN
Reproductive growth is a bioenergetic process with high energy consumption. Pollination induces female flower longevity in spinach by accelerating sepal retention and development. Cellular bioenergetics involved in cellular growth is at the foundation of all developmental activities. By contrast, how pollination alter the sepal cells bioenergetics to support energy requirement and anabolic biomass accumulation for development is less well understood. To investigate pollination-induced energy-associated pathway changes in sepal tissues after pollination, we utilized RNA-sequencing to identify transcripts that were differentially expressed between unpollinated (UNP) and pollinated flower sepals at 12, 48, and 96HAP. In total, over 6756 non-redundant DEGs were identified followed by pairwise comparisons (i.e. UNP vs 12HAP, UNP vs 48HAP, and UNP vs 96HAP). KEGG enrichment showed that the central carbon metabolic pathway was significantly activated after pollination and governed by pivotal energy-associated regulation pathways such as glycolysis, the citric acid cycle, oxidative phosphorylation, photosynthesis, and pentose phosphate pathways. Co-expression networks confirmed the synergistically regulation interactions among these pathways. Gene expression changes in these pathways were not observed after fertilization at 12HAP, but started after fertilization at 48HAP, and significant changes in gene expression occurred at 96HAP when there is considerable sepal development. These results were also supported by qPCR validation. Our results suggest that multiple energy-associated pathways may play a pivotal regulatory role in post-pollination sepal longevity for developing the seed coat, and proposed an energy pathway model regulating sepal retention in spinach.
RESUMEN
Bracts are the metamorphic non-flower organ in angiosperm plants. The variation of the color and shape of bracts was found to be neo-functionalized (i.e., similar to petals), garnering research interest as a pollinator attractor. Bougainvillea is known for its specialized, large, and colorful bracts, which contrast with its tiny colorless flowers. As a plant whose bracts vary greatly in terms of coloration, the molecular mechanisms for Bougainvillea bract coloration and polychroism are largely unknown. The lack of genomic information for Bougainvillea largely hinders studies into the evolution and genetic basis of bract color variation. In this study, a pan-transcriptome of bracts obtained from 18 Bougainvillea glabra accessions was employed to investigate the global population-level germplasm kinship and the gene regulation network for bract color variation. Our results showed that the bracts of B. glabra accessions have largely differentiated International Commission on Illumination (CIE) L-a-b values. Moreover, germplasm kinship detected using principal component analysis, phylogeny, and admixture analysis showed three optimal subgroups, two of them distinctly clustered, which were not directly correlated with bract color variation at the population level. Differentially expressed genes (DEGs) between accessions of high vs. low L-a-b values revealed several considerable upregulated genes related to bract color L-a-b variation. A weighted gene co-expression network was constructed, and eight co-expressed regulation modules were identified that were highly correlated with variation in bract CIE L-a-b color values. Several candidate DEGs and co-expressed hub genes (e.g., GERD, SGR, ABCA3, GST, CYP76AD1, CYP76C, and JAZ) that were tightly associated with bract color variation were eventually determined responsible for L-a-b colorations, which might be the core regulation factors contributing to the B. glabra bract color variation. This study provides valuable insights into the research on germplasm kinship, population-level pan-transcriptome expression profiles, and the molecular basis of color variation of key innovative bracts in horticultural Bougainvillea.
RESUMEN
Numerous studies have demonstrated that type 2 diabetes (T2D) is closely linked to the occurrence of Alzheimer's disease (AD). Nevertheless, the underlying mechanisms for this association are still unknown. Insulin resistance (IR) hallmarked by hyperinsulinemia, as the earliest and longest-lasting pathological change in T2D, might play an important role in AD. Since hyperinsulinemia has an independent contribution to related disease progressions by promoting inflammation in the peripheral system, we hypothesized that hyperinsulinemia might have an effect on microglia which plays a crucial role in neuroinflammation of AD. In the present study, we fed 4-week-old male C57BL/6 mice with a high-fat diet (HFD) for 12 weeks to establish IR model, and the mice treated with standard diet (SD) were used as control. HFD led to obesity in mice with obvious glucose and lipid metabolism disorder, the higher insulin levels in both plasma and cerebrospinal fluid, and aberrant insulin signaling pathway in the whole brain. Meanwhile, IR mice appeared impairments of spatial learning and memory accompanied by neuroinflammation which was characterized by activated microglia and upregulated expression of pro-inflammatory factors in different brain regions. To clarify whether insulin contributes to microglial activation, we treated primary cultured microglia and BV2 cell lines with insulin in vitro to mimic hyperinsulinemia. We found that hyperinsulinemia not only increased microglial proliferation and promoted M1 polarization by enhancing the production of pro-inflammatory factors, but also impaired membrane translocation of glucose transporter 4 (GLUT4) serving as the insulin-responding glucose transporter in the processes of glucose up-taking, reduced ATP production and increased mitochondrial fission. Our study provides new perspectives and evidence for the mechanism underlying the association between T2D and AD.