Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Virol ; 98(1): e0166423, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38054618

RESUMEN

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease in pigs. The low-density lipoprotein receptor (LDLR) is a transcriptional target of the sterol-regulatory element-binding proteins (SREBPs) and participates in the uptake of LDL-derived cholesterol. However, the involvement of LDLR in PRV infection has not been well characterized. We observed an increased expression level of LDLR mRNA in PRV-infected 3D4/21, PK-15, HeLa, RAW264.7, and L929 cells. The LDLR protein level was also upregulated by PRV infection in PK-15 cells and in murine lung and brain. The treatment of cells with the SREBP inhibitor, fatostatin, or with SREBP2-specific small interfering RNA prevented the PRV-induced upregulation of LDLR expression as well as viral protein expression and progeny virus production. This suggested that PRV activated SREBPs to induce LDLR expression. Furthermore, interference in LDLR expression affected PRV proliferation, while LDLR overexpression promoted it. This indicated that LDLR was involved in PRV infection. The study also demonstrated that LDLR participated in PRV invasions. The overexpression of LDLR or inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to LDLR and targets it for lysosomal degradation, significantly enhanced PRV attachment and entry. Mechanistically, LDLR interacted with PRV on the plasma membrane, and pretreatment of cells with LDLR antibodies was able to neutralize viral entry. An in vivo study indicated that the treatment of mice with the PCSK9 inhibitor SBC-115076 promoted PRV proliferation. The data from the study indicate that PRV hijacks LDLR for viral entry through the activation of SREBPs.IMPORTANCEPseudorabies virus (PRV) is a herpesvirus that primarily manifests as fever, pruritus, and encephalomyelitis in various domestic and wild animals. Owing to its lifelong latent infection characteristics, PRV outbreaks have led to significant financial setbacks in the global pig industry. There is evidence that PRV variant strains can infect humans, thereby crossing the species barrier. Therefore, gaining deeper insights into PRV pathogenesis and developing updated strategies to contain its spread are critical. This study posits that the low-density lipoprotein receptor (LDLR) could be a co-receptor for PRV infection. Hence, strategies targeting LDLR may provide a promising avenue for the development of effective PRV vaccines and therapeutic interventions.


Asunto(s)
Herpesvirus Suido 1 , Lipoproteínas LDL , Seudorrabia , Enfermedades de los Porcinos , Animales , Humanos , Ratones , Herpesvirus Suido 1/fisiología , Lipoproteínas LDL/metabolismo , Proproteína Convertasa 9 , Seudorrabia/virología , Porcinos , Enfermedades de los Porcinos/virología , Internalización del Virus , Línea Celular
2.
Acc Chem Res ; 47(7): 2026-40, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24877894

RESUMEN

CONSPECTUS: Synthetic macrocyclic hosts have played key roles in the development of host-guest chemistry. Crown ethers are a class of macrocyclic molecules with unique flexible structures. They have served as the first generation of synthetic hosts, and researchers have extensively studied them in molecular recognition. However, the flexible structures of simple crown ethers and their relatively limited modes of complexation with guests have limited the further applications of these molecules. In recent years, researchers have moved toward fabricating interlocking molecules, supramolecular polymers, and other assemblies with specific structures and properties. Therefore, researchers have developed more complex crown ether-based macrocyclic hosts with multicavity structures and multicomplexation modes that provide more diverse and sophisticated host-guest systems. In this Account, we summarize our research on the synthesis and characterization of iptycene-derived crown ether hosts, their use as host molecules, and their applications in self-assembled complexes. Iptycenes including triptycenes and pentiptycenes are a class of aromatic compounds with unique rigid three-dimensional structures. As a result, they are promising building blocks for the synthesis of novel macrocyclic hosts and the construction of novel self-assembled complexes with specific structures and properties. During the last several years, we have designed and synthesized a new class of iptycene-derived crown ether hosts including macrotricyclic polyethers, molecular tweezer-like hosts, and tritopic tris(crown ether) hosts, which are all composed of rigid iptycene building blocks linked by flexible crown ether chains. We have examined the complexation behavior of these hosts with different types of organic guest molecules. Unlike with conventional crown ethers, the combination of iptycene moieties and crown ether chains provides the iptycene-derived crown ether hosts with complexation properties that differ based on the structure of the guests. The rigid iptycene moieties within these synthetic host molecules both maintain their inherent three-dimensional cavities and generate multicavity structures. The flexible crown ether chains allow the iptycene-derived hosts to adjust their conformations as they encapsulate guest molecules. Moreover, the expanded complexation properties also allow the host-guest systems based on the iptycene-derived crown ethers to respond to multiple external stimuli, resulting in a variety of supramolecular assemblies. Finally, we also describe the construction of mechanically interlocked self-assemblies, molecular switches/molecular machines, and supramolecular polymers using these new host molecules. We expect that the unique structural features and diverse complexation properties of these iptycene-derived crown ether hosts will lead to increasing interest in this field and in supramolecular chemistry overall.

3.
Org Biomol Chem ; 11(47): 8183-90, 2013 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-24088872

RESUMEN

The complexation behaviour of a pentiptycene-derived bis(crown ether), containing two 24-crown-8 moieties in a trans arrangement, and a series of paraquat derivatives with different terminal functional groups was investigated. It was found that all of the paraquat derivatives could form stable 2 : 1 complexes with the pentiptycene-derived host both in solution and the solid state, where multiple non-covalent interactions between the host and the guests played an important role. Moreover, the binding and release of the guests in the complexes could also be efficiently controlled by the removal and addition of potassium ions.

4.
Autophagy ; 18(8): 1801-1821, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34822318

RESUMEN

Alphaherpesvirus infection results in severe health consequences in a wide range of hosts. USPs are the largest subfamily of deubiquitinating enzymes that play critical roles in immunity and other cellular functions. To investigate the role of USPs in alphaherpesvirus replication, we assessed 13 USP inhibitors for PRV replication. Our data showed that all the tested compounds inhibited PRV replication, with the USP14 inhibitor b-AP15 exhibiting the most dramatic effect. Ablation of USP14 also influenced PRV replication, whereas replenishment of USP14 in USP14 null cells restored viral replication. Although inhibition of USP14 induced the K63-linked ubiquitination of PRV VP16 protein, its degradation was not dependent on the proteasome. USP14 directly bound to ubiquitin chains on VP16 through its UBL domain during the early stage of viral infection. Moreover, USP14 inactivation stimulated EIF2AK3/PERK- and ERN1/IRE1-mediated signaling pathways, which were responsible for VP16 degradation through SQSTM1/p62-mediated selective macroautophagy/autophagy. Ectopic expression of non-ubiquitinated VP16 fully rescued PRV replication. Challenge of mice with b-AP15 activated ER stress and autophagy and inhibited PRV infection in vivo. Our results suggested that USP14 was a potential therapeutic target to treat alphaherpesvirus-induced infectious diseases.Abbreviations ATF4: activating transcription factor 4; ATF6: activating transcription factor 6; ATG5: autophagy related 5; ATG12: autophagy related 12; CCK-8: cell counting kit-8; Co-IP: co-immunoprecipitation; CRISPR: clustered regulatory interspaced short palindromic repeat; Cas9: CRISPR associated system 9; DDIT3/CHOP: DNA-damage inducible transcript 3; DNAJB9/ERdj4: DnaJ heat shock protein family (Hsp40) member B9; DUBs: deubiquitinases; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; EP0: ubiquitin E3 ligase ICP0; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum (ER) to nucleus signaling 1; FOXO1: forkhead box O1; FRET: Förster resonance energy transfer; HSPA5/BiP: heat shock protein 5; HSV: herpes simplex virus; IE180: transcriptional regulator ICP4; MAP1LC3/LC3: microtube-associated protein 1 light chain 3; MOI: multiplicity of infection; MTOR: mechanistic target of rapamycin kinase; PPP1R15A/GADD34: protein phosphatase 1, regulatory subunit 15A; PRV: pseudorabies virus; PRV gB: PRV glycoprotein B; PRV gE: PRV glycoprotein E; qRT-PCR: quantitative real-time polymerase chain reaction; sgRNA: single guide RNA; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TCID50: tissue culture infective dose; UB: ubiquitin; UBA: ubiquitin-associated domain; UBL: ubiquitin-like domain; UL9: DNA replication origin-binding helicase; UPR: unfolded protein response; USPs: ubiquitin-specific proteases; VHS: virion host shutoff; VP16: viral protein 16; XBP1: X-box binding protein 1; XBP1s: small XBP1; XBP1(t): XBP1-total.


Asunto(s)
Alphaherpesvirinae , Autofagia , Estrés del Retículo Endoplásmico , Proteína Vmw65 de Virus del Herpes Simple , Ubiquitina Tiolesterasa , Alphaherpesvirinae/patogenicidad , Alphaherpesvirinae/fisiología , Animales , Proliferación Celular , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Macroautofagia , Ratones , Proteína Sequestosoma-1 , Ubiquitina Tiolesterasa/metabolismo
5.
Chin Herb Med ; 12(4): 367-374, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36120168

RESUMEN

Objective: As traditional techniques for microscopic identification of Chinese medicines currently lack objective and high-quality reference images, here we developed a systemic procedure to be used in microscopic identification of Chinese medicines, which would lead to more objective, effective and accurate identification process. Methods: Spatholobi Caulis (Jixueteng in Chinese) was used as the specimen in the development of such procedure. Jixueteng samples were microscopically examined in bright- and dark-field microscopy. Microscopic images were obtained by regular, EDF, and image stitching techniques. Results: The microscopic images of the characteristics in pulverized Jixueteng were captured, thanks to EDF imaging and image stitching techniques which allowed the detailed and full sighting of each characteristic to be obtained simultaneously. Different layers in anatomical transverse section, including cork, phelloderm, cortex, phloem, cambium, xylem and pith, were distinctively observed. Moreover, by comparing images of bright- and dark-field microscopy, birefringent and non- birefringent components could readily be distinguished. Conclusion: With application of the developed procedure, high-definition, panoramic and microscopic images were acquired, which could be used as the reference images for microscopic identification of Chinese medicines.

6.
Front Immunol ; 11: 575818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072119

RESUMEN

Pigs have anatomical and physiological characteristics comparable to those in humans and, therefore, are a favorable model for immune function research. Interferons (IFNs) and inflammasomes have essential roles in the innate immune system. Here, we report that G10, a human-specific agonist of stimulator of interferon genes (STING), activates both type I IFN and the canonical NLRP3 inflammasome in a STING-dependent manner in porcine cells. Without a priming signal, G10 alone transcriptionally stimulated Sp1-dependent p65 expression, thus triggering activation of the nuclear factor-κB (NF-κB) signaling pathway and thereby priming inflammasome activation. G10 was also found to induce potassium efflux- and NLRP3/ASC/Caspase-1-dependent secretion of IL-1ß and IL-18. Pharmacological and genetic inhibition of NLRP3 inflammasomes increased G10-induced type I IFN expression, thereby preventing virus infection, suggesting negative regulation of the NLRP3 inflammasome in the IFN response in the context of STING-mediated innate immune activation. Overall, our findings reveal a new mechanism through which G10 activates the NLRP3 inflammasome in porcine cells and provide new insights into STING-mediated innate immunity in pigs compared with humans.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , Inflamasomas/agonistas , Interferón Tipo I/metabolismo , Proteínas de la Membrana/agonistas , Proteína con Dominio Pirina 3 de la Familia NLR/agonistas , Tiazinas/farmacología , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Interferón Tipo I/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Sus scrofa , Células THP-1 , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Células Vero
7.
Org Lett ; 16(7): 1860-3, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24635015

RESUMEN

A novel [2](2)rotaxane based on pentiptycene-derived bis(crown ether) can be efficiently synthesized via a "click chemistry" method and the subsequent N-methylation. Due to the different affinities of DB24C8 with the ammonium and triazolium stations, the wing-flapping movement of the DB24C8 "wings" in the [2](2)rotaxane can be easily achieved by acid/base stimulus.


Asunto(s)
Antracenos/química , Éteres Corona/síntesis química , Modelos Químicos , Rotaxanos/síntesis química , Química Clic , Éteres Corona/química , Estructura Molecular , Rotaxanos/química
8.
Chem Commun (Camb) ; 50(99): 15796-8, 2014 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-25372926

RESUMEN

We report long-lived charge separation in a highly rigid host-guest complex of pentiptycene bis(crown ether) and Li(+)@C60, in which the pentiptycene framework is actively involved as an electron donor in a photoinduced electron-transfer process to the excited states of Li(+)@C60 through a rigid distance in the complex.


Asunto(s)
Antracenos/química , Complejos de Coordinación/química , Éteres Corona/química , Fulerenos/química , Litio/química , Complejos de Coordinación/síntesis química , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Luz , Conformación Molecular , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA