Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Langmuir ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958522

RESUMEN

Amino acids make up a promising family of molecules capable of direct air capture (DAC) of CO2 from the atmosphere. Under alkaline conditions, CO2 reacts with the anionic form of an amino acid to produce carbamates and deactivated zwitterionic amino acids. The presence of the various species of amino acids and reactive intermediates can have a significant effect on DAC chemistry, the role of which is poorly understood. In this study, all-atom molecular dynamics (MD) based computational simulations and vibrational sum frequency generation (vSFG) spectroscopy studies were conducted to understand the role of competitive interactions at the air-aqueous interface in the context of DAC. We find that the presence of potassium bicarbonate ions, in combination with the anionic and zwitterionic forms of amino acids, induces concentration and charge gradients at the interface, generating a layered molecular arrangement that changes under pre- and post-DAC conditions. In parallel, an enhancement in the surface activity of both anionic and zwitterionic forms of amino acids is observed, which is attributed to enhanced interfacial stability and favorable intermolecular interactions between the adsorbed amino acids in their anionic and zwitterionic forms. The collective influence of these competitive interactions, along with the resulting interfacial heterogeneity, may in turn affect subsequent capture reactions and associated rates. These effects underscore the need to consider dynamic changes in interfacial chemical makeup to enhance DAC efficiency and to develop successful negative emission and storage technologies.

2.
Phys Chem Chem Phys ; 26(5): 4062-4070, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38224171

RESUMEN

Direct access to trans-cis photoisomerization in a metastable state photoacid (mPAH) remains challenging owing to the presence of competing excited-state relaxation pathways and multiple transient isomers with overlapping spectra. Here, we reveal the photoisomerization dynamics in an indazole mPAH using time-resolved fluorescence (TRF) spectroscopy by exploiting a unique property of this mPAH having fluorescence only from the trans isomer. The combination of these experimental results with time-dependent density function theory (TDDFT) calculations enables us to gain mechanistic insight into this key dynamical process.

3.
Angew Chem Int Ed Engl ; 62(29): e202304957, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198131

RESUMEN

One of the grand challenges underlying current direct air capture (DAC) technologies relates to the intensive energy cost for sorbent regeneration and CO2 release, making the massive scale (GtCO2 /year) deployment required to have a positive impact on climate change economically unfeasible. This challenge underscores the critical need to develop new DAC processes with substantially reduced regeneration energies. Here, we report a photochemically-driven approach for CO2 release by exploiting the unique properties of an indazole metastable-state photoacid (mPAH). Our measurements on simulated and amino acid-based DAC systems revealed the potential of mPAH to be used for CO2 release cycles by regulating pH changes and associated isomers driven by light. Upon irradiating with moderate intensity light, a ≈55 % and ≈68 % to ≈78 % conversion of total inorganic carbon to CO2 was found for the simulated and amino acid-based DAC systems, respectively. Our results confirm the feasibility of on-demand CO2 release under ambient conditions using light instead of heat, thereby providing an energy efficient pathway for the regeneration of DAC sorbents.

4.
Analyst ; 146(9): 3062-3072, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33949432

RESUMEN

Nonlinear optical microscopy that leverages an objective based total internal reflection (TIR) excitation scheme is an attractive means for rapid, wide-field imaging with enhanced surface sensitivity. Through select combinations of distinct modalities, one can, in principle, access complementary chemical and structural information for various chemical species near interfaces. Here, we report a successful implementation of such a wide-field nonlinear optical microscope system, which combines coherent anti-Stokes Raman scattering (CARS), two-photon fluorescence (TPF), second harmonic generation (SHG), and sum frequency generation (SFG) modalities on the same platform. The intense optical fields needed to drive these high order nonlinear optical processes are achieved through the use of femtosecond pulsed light in combination with the intrinsic field confinement induced by TIR over a large field of view. The performance of our multimodal microscope was first assessed through the experimental determination of its chemical fidelity, intensity and polarization dependences, and spatial resolution using a set of well-defined model systems. Subsequently, its unique capabilities were validated through imaging complex biological systems, including Hydrangea quercifolia pollen grains and Pantoea sp. YR343 bacterial cells. Specifically, the spatial distribution of different molecular groups in the former was visualized via vibrational contrast mechanisms of CARS, whereas co-registered TPF imaging allowed the identification of spatially localized intrinsic fluorophores. We further demonstrate the feasibility of our microscope for wide-field CARS imaging on live cells through independent characterization of cell viability using spatially co-registered TPF imaging. This approach to TIR enabled wide-field imaging is expected to provide new insights into bacterial strains and their interactions with other species in the rhizosphere in a time-resolved and chemically selective manner.


Asunto(s)
Microscopía , Espectrometría Raman , Imagen Óptica , Fotones , Vibración
5.
J Phys Chem A ; 125(40): 8765-8776, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34606276

RESUMEN

Nonlinear optical (NLO) microscopy relies on multiple light-matter interactions to provide unique contrast mechanisms and imaging capabilities that are inaccessible to traditional linear optical imaging approaches, making them versatile tools to understand a wide range of complex systems. However, the strong excitation fields that are necessary to drive higher-order optical processes efficiently are often responsible for photobleaching, photodegradation, and interruption in many systems of interest. This is especially true for imaging living biological samples over prolonged periods of time or in accessing intrinsic dynamics of electronic excited-state processes in spatially heterogeneous materials. This perspective outlines some of the key limitations of two NLO imaging modalities implemented in our lab and highlights the unique potential afforded by the quantum properties of light, especially entangled two-photon absorption based NLO spectroscopy and microscopy. We further review some of the recent exciting advances in this emerging filed and highlight some major challenges facing the realization of quantum-light-enabled NLO imaging modalities.


Asunto(s)
Microscopía Óptica no Lineal/instrumentación , Microscopía Óptica no Lineal/métodos , Colorantes Fluorescentes/química , Luz , Dinámicas no Lineales , Fotoblanqueo
6.
J Am Chem Soc ; 142(1): 290-299, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31801348

RESUMEN

Polymer-stabilized liquid/liquid interfaces are an important and growing class of bioinspired materials that combine the structural and functional capabilities of advanced synthetic materials with naturally evolved biophysical systems. These platforms have the potential to serve as selective membranes for chemical separations and molecular sequencers and to even mimic neuromorphic computing elements. Despite the diversity in function, basic insight into the assembly of well-defined amphiphilic polymers to form functional structures remains elusive, which hinders the continued development of these technologies. In this work, we provide new mechanistic insight into the assembly of an amphiphilic polymer-stabilized oil/aqueous interface, in which the headgroups consist of positively charged methylimidazolium ionic liquids, and the tails are short, monodisperse oligodimethylsiloxanes covalently attached to the headgroups. We demonstrate using vibrational sum frequency generation spectroscopy and pendant drop tensiometery that the composition of the bulk aqueous phase, particularly the ionic strength, dictates the kinetics and structures of the amphiphiles in the organic phase as they decorate the interface. These results show that H-bonding and electrostatic interactions taking place in the aqueous phase bias the grafted oligomer conformations that are adopted in the neighboring oil phase. The kinetics of self-assembly were ionic strength dependent and found to be surprisingly slow, being composed of distinct regimes where molecules adsorb and reorient on relatively fast time scales, but where conformational sampling and frustrated packing takes place over longer time scales. These results set the stage for understanding related chemical phenomena of bioinspired materials in diverse technological and fundamental scientific fields and provide a solid physical foundation on which to design new functional interfaces.


Asunto(s)
Lípidos/química , Polímeros/química , Fenómenos Biofísicos , Enlace de Hidrógeno , Cinética , Estructura Molecular , Concentración Osmolar , Electricidad Estática , Tensión Superficial
7.
Opt Lett ; 45(11): 3087-3090, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32479466

RESUMEN

Wide-field coherent anti-Stokes Raman scattering (CARS) microscopy offers an attractive means for the rapid and simultaneous acquisition of vibrationally resolved images across a large field of view. A major challenge in the implementation lies in how to achieve sufficiently strong excitation fields necessary to drive the third-order optical responses over the large focal region. Here, we report a new wide-field CARS microscope enabled by a total internal reflection excitation scheme using a femtosecond Ti:Sapphire oscillator to generate pump and broadband near-infrared Stokes pulses. The spectrally broad Stokes pulse, in combination with its inherent chirp, offers not only access to a wide range of Raman modes spanning ∼1000 to ∼3500cm-1 but also a straightforward means to select vibrational transitions within this range by simply varying the time delay between the pulses. The unique capabilities of this wide-field CARS microscope were validated by acquiring high-quality CARS images from the model and complex biological samples on conventional microscope coverslips.

8.
J Phys Chem A ; 124(19): 3915-3923, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32309940

RESUMEN

Multimodal all-optical imaging involving coregistered femtosecond transient absorption microscopy (TAM), time-integrated photoluminescence (PL), and steady-state modalities such as confocal reflectance and transmission offers an appealing approach to gain a comprehensive understanding of complex electronic excited-state phenomena in spatially heterogeneous systems. A unique combination of these modalities allows us to unravel not only the competing electronic excited-state dynamical processes but also the underlying morphological information with simultaneous high temporal and spatial resolution. However, correlating the various images obtained from time-resolved and time-independent modalities is generally nontrivial and particularly challenging when the electronic dynamics under study evolve in both time and space. Here, we demonstrate a new approach for rationally correlating time-resolved microscopy with coregistered time-integrated or steady-state modalities. Specifically, our approach involves an extended global lifetime analysis of the time-resolved microscopic data set to separate distinct dynamical processes taking place on commensurate time scales, and the resulting decay-associated amplitude maps (DAAMs) were applied to explore correlations with the images acquired using time-independent modalities. The feasibility of our approach was validated through analyzing a multimodal data set acquired from a thin film of chloride-containing mixed lead halide perovskites (CH3NH3PbI3-xClx) using femtosecond transient absorption, time-integrated PL, and confocal reflectance microscopies. Analysis of the results obtained enable us to gain new insight into the complex ultrafast relaxation dynamics in this highly heterogeneous system.

9.
Nano Lett ; 18(10): 6271-6278, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30216078

RESUMEN

Metal halide perovskite thin films have achieved remarkable performance in optoelectronic devices but suffer from spatial heterogeneity in their electronic properties. To achieve higher device performance and reliability needed for widespread commercial deployment, spatial heterogeneity of optoelectronic properties in the perovskite thin film needs to be understood and controlled. Clear identification of the causes underlying this heterogeneity, most importantly the spatial heterogeneity in charge trapping behavior, has remained elusive. Here, a multimodal imaging approach consisting of photoluminescence, optical transmission, and atomic force microscopy is utilized to separate electronic heterogeneity from morphology variations in perovskite thin films. By comparing the degree of heterogeneity in highly oriented and randomly oriented polycrystalline perovskite thin film samples, we reveal that disorders in the crystallographic orientation of the grains play a dominant role in determining charge trapping and electronic heterogeneity. This work also demonstrates a polycrystalline thin film with uniform charge trapping behavior by minimizing crystallographic orientation disorder. These results suggest that single crystals may not be required for perovskite thin film based optoelectronic devices to reach their full potential.

10.
Opt Lett ; 43(9): 2038-2041, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29714740

RESUMEN

We describe a new approach that expands the utility of vibrational sum-frequency generation (vSFG) spectroscopy using shaped near-infrared (NIR) laser pulses. We demonstrate that arbitrary pulse shapes can be specified to match experimental requirements without the need for changes to the optical alignment. In this way, narrowband NIR pulses as long as 5.75 ps are readily generated, with a spectral resolution of about 2.5 cm-1, an improvement of approximately a factor of 3 compared to a typical vSFG system. Moreover, the utility of having complete control over the NIR pulse characteristics is demonstrated through nonresonant background suppression from a metallic substrate by generating an etalon waveform in the pulse shaper. The flexibility afforded by switching between arbitrary NIR waveforms at the sample position with the same instrument geometry expands the type of samples that can be studied without extensive modifications to existing apparatuses or large investments in specialty optics.

11.
Chemistry ; 23(70): 17734-17739, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29044745

RESUMEN

Photoinduced structural changes (PSC) is one of the fundamental excited-state dynamic processes, and yet often very challenging to distinguish from competing electronic excited-state relaxation channels having similar or even comparable timescales. Here, we report a detailed study on the PSC of a pyrazolate bridged platinum(II) binuclear complex, BFPtPZ (C^NPt(µ-pz')2 PtC^N, C^N=2-(2,4-difluorophenyl)pyridine, pz'=pyrazolate), a molecular butterfly, using time-correlated single photon counting measurements at different wavelengths and sample temperatures. Analysis of the results obtained using dichloromethane (DCM) and ethylene carbonate (EC) as solvents enabled us to reveal an unexpected, strong solvent effect on the PSC processes. We show that a rapid PSC process with a characteristic timescale of 323 ps is observed in DCM, which leads to an excitation equilibrium between the ligand center/metal-to-ligand charge transfer (3 LC/MLCT) and metal-metal-to-ligand charge transfer (3 MMLCT) triplet states. The subsequent relaxation from these electronic states to the ground state takes place in several nanoseconds. In contrast, the corresponding PSC process in EC appears slow at all temperatures studied in our experiments and showed no sign of such excitation equilibrium. The observed solvent effect is found to arise from distinct solvent properties including their viscosities and polarities as well as the peculiar electronic excited-states of the butterfly-like molecules with charge transfer character.

12.
Langmuir ; 32(32): 8116-22, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27452922

RESUMEN

The continued development and application of surfactant-encapsulated polyoxometalates (SEPs) relies on understanding the ordering and organization of species at their interface and how these are impacted by the various local environments to which they are exposed. Here, we report on the equilibrium properties of two common SEPs adsorbed to the air-water interface and probed with surface-specific vibrational sum-frequency generation (SFG) spectroscopy. These results reveal clear shifts in vibrational band positions, the magnitude of which scales with the charge of the SEP core, which is indicative of a static field effect on the surfactant coating and the associated local chemical environment. This static field also induces ordering in surrounding water molecules that is mediated by charge screening via the surface-bound surfactants. From these SFG measurements, we are able to show that Mo132-based SEPs are more polar than Mo72V30 SEPs. Disorder in the surfactant chain packing at the highly curved SEP surfaces is attributed to large conic volumes that can be sampled without interactions with neighboring chains. Measurements of adsorption isotherms yield free energies of adsorption to the air-water interface of -46.8 ± 0.4 and -44.8 ± 1.2 kJ/mol for the Mo132 and Mo72V30 SEPs, respectively, indicating a strong propensity for the fluid surface. The influence of intermolecular interactions on the surface adsorption energies is discussed.

13.
Nanotechnology ; 27(11): 114002, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-27308671

RESUMEN

This work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps (DAAMs) that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH3NH3PbI3) perovskite thin film allows us to simplify the data set comprising 68 time-resolved images into four DAAMs. These maps offer a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.

14.
J Phys Chem A ; 118(45): 10639-48, 2014 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-25187099

RESUMEN

The synthesis, electrochemistry, and photophysical characterization of a 10,10-dimethylbiladiene tetrapyrrole bearing ancillary pentafluorophenyl groups at the 5- and 15-meso positions (DMBil1) is presented. This nonmacrocyclic tetrapyrrole platform is robust and can serve as an excellent ligand scaffold for Zn(2+) and Cu(2+) centers. X-ray diffraction studies conducted for DMBil1 along with the corresponding Zn[DMBil1] and Cu[DMBil1] complexes show that this ligand scaffold binds a single metal ion within the tetrapyrrole core. Additionally, electrochemical experiments revealed that all three of the aforementioned compounds display an interesting redox chemistry as the DMBil1 framework can be both oxidized and reduced by two electrons. Spectroscopic and photophysical experiments carried out for DMBil1, Zn[DMBil1], and Cu[DMBil1] provide a basic picture of the electronic properties of these platforms. All three biladiene derivatives strongly absorb light in the visible region and are weakly emissive. The ability of these compounds to sensitize the formation of (1)O2 at wavelengths longer than 500 nm was probed. Both the free base and Zn(2+) 10,10-dimethylbiladiene architectures show modest efficiencies for (1)O2 sensitization. The combination of structural, electrochemical, and photophysical data detailed herein provides a basis for the design of additional biladiene constructs for the activation of O2 and other small molecules.


Asunto(s)
Cobre/química , Oxígeno/química , Tetrapirroles/química , Zinc/química , Cationes Bivalentes/química , Electrones , Luz , Oxidación-Reducción , Procesos Fotoquímicos , Análisis Espectral , Difracción de Rayos X
15.
Catal Today ; 225: 149-157, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25395735

RESUMEN

The reduction of carbon dioxide to chemical fuels such as carbon monoxide is an important challenge in the field of renewable energy conversion. Given the thermodynamic stability of carbon dioxide, it is difficult to efficiently activate this substrate in a selective fashion and the development of new electrocatalysts for CO2 reduction is of prime importance. To this end, we have prepared and studied a new fac-ReI(CO)3 complex supported by a bipyridine ligand containing ancillary BODIPY moieties ([Re(BB2)(CO)3Cl]). Voltammetry experiments revealed that this system displays a rich redox chemistry under N2, as [Re(BB2)(CO)3Cl] can be reduced by up to four electrons at modest potentials. These redox events have been characterized as the ReI/0 couple, and three ligand based reductions - two of which are localized on the BODIPY units. The ability of the BB2 ligand to serve as a non-innocent redox reservoir is manifest in an enhanced electrocatalysis with CO2 as compared to an unsubstituted Re-bipyridine complex lacking BODIPY units ([Re(bpy)(CO)3Cl]). The second order rate constant for reduction of CO2 by [Re(BB2)(CO)3Cl] was measured to be k = 3400 M-1s-1 at an applied potential of -2.0 V versus SCE, which is roughly three times greater than the corresponding unsubstituted Re-bipyridine homologue. Photophysical and photochemical studies were also carried out to determine if [Re(BB2)(CO)3Cl] was a competent platform for CO2 reduction using visible light. These experiments showed that this complex supports unusual excited state dynamics that precludes efficient CO2 reduction and are distinct from those that are typically observed for fac-ReI(CO)3 complexes.

16.
Chempluschem ; : e202300713, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456801

RESUMEN

The intensive energy demands associated with solvent regeneration and CO2 release in current direct air capture (DAC) technologies makes their deployment at the massive scales (GtCO2/year) required to positively impact the climate economically unfeasible. This challenge underscores the critical need to develop new DAC processes with significantly reduced energy costs. Recently, we developed a new approach to photochemically drive efficient release of CO2 through an intermolecular proton transfer reaction by exploiting the unique properties of an indazole metastable-state photoacid (mPAH), opening a new avenue towards energy efficient on-demand CO2 release and solvent regeneration using abundant solar energy instead of heat. In this Concept Article, we will describe the principle of our photochemically-driven CO2 release approach for solvent-based DAC systems, discuss the essential prerequisites and conditions to realize this cyclable CO2 release chemistry under ambient conditions. We outline the key findings of our approach, discuss the latest developments from other research laboratories, detail approaches used to monitor DAC systems in situ, and highlight experimental procedures for validating its feasibility. We conclude with a summary and outlook into the immediate challenges that must be addressed in order to fully exploit this novel photochemically-driven approach to DAC solvent regeneration.

17.
J Colloid Interface Sci ; 669: 552-560, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38729003

RESUMEN

HYPOTHESIS: Understanding the rules that control the assembly of nanostructured soft materials at interfaces is central to many applications. We hypothesize that electrolytes can be used to alter the hydration shell of amphiphilic oligomers at the air-aqueous interface of Langmuir films, thereby providing a means to control the formation of emergent nanostructures. EXPERIMENTS: Three representative salts - (NaF, NaCl, NaSCN) were studied for mediating the self-assembly of oligodimethylsiloxane methylimidazolium (ODMS-MIM+) amphiphiles in Langmuir films. The effects of the different salts on the nanostructure assembly of these films were probed using vibrational sum frequency generation (SFG) spectroscopy and Langmuir trough techniques. Experimental data were supported by atomistic molecular dynamic simulations. FINDINGS: Langmuir trough surface pressure - area isotherms suggested a surprising effect on oligomer assembly, whereby the presence of anions affects the stability of the interfacial layer irrespective of their surface propensities. In contrast, SFG results implied a strong anion effect that parallels the surface activity of anions. These seemingly contradictory trends are explained by anion driven tail dehydration resulting in increasingly heterogeneous systems with entangled ODMS tails and appreciable anion penetration into the complex interfacial layer comprised of headgroups, tails, and interfacial water molecules. These findings provide physical and chemical insight for tuning a wide range of interfacial assemblies.

18.
ACS Appl Mater Interfaces ; 16(9): 12052-12061, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38411063

RESUMEN

Interfaces are considered a major bottleneck in the capture of CO2 from air. Efforts to design surfaces to enhance CO2 capture probabilities are challenging due to the remarkably poor understanding of chemistry and self-assembly taking place at these interfaces. Here, we leverage surface-specific vibrational spectroscopy, Langmuir trough techniques, and simulations to mechanistically elucidate how cationic oligomers can drive surface localization of amino acids (AAs) that serve as CO2 capture agents speeding up the apparent rate of absorption. We demonstrate how tuning these interfaces provides a means to facilitate CO2 capture chemistry to occur at the interface, while lowering surface tension and improving transport/reaction probabilities. We show that in the presence of interfacial AA-rich aggregates, one can improve capture probabilities vs that of a bare interface, which holds promise in addressing climate change through the removal of CO2 via tailored interfaces and associated chemistries.

19.
J Am Chem Soc ; 135(17): 6601-7, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23594346

RESUMEN

A homologous set of 5,5-dimethylphlorin macrocycles in which the identity of one aryl ring is systematically varied has been prepared. These derivatives contain ancillary pentafluorophenyl (3H(Phl(F))), mesityl (3H(Phl(Mes))), 2,6-bismethoxyphenyl (3H(Phl(OMe))), 4-nitrophenyl (3H(Phl(NO2))), or 4-tert-butylcarboxyphenyl (3H(Phl(CO2tBu))) groups at the 15-meso-position. These porphyrinoids were prepared in good yields (35-50%) and display unusual multielectron redox and photochemical properties. Each phlorin can be oxidized up to three times at modest potentials and can be reduced twice. The electron-donating and electron-releasing properties of the ancillary aryl substituent attenuate the potentials of these redox events; phlorins containing electron-donating aryl groups are easier to oxidize and harder to reduce, while the opposite trend is observed for phlorins containing electron-withdrawing functionalities. Phlorin substitution also has a pronounced effect on the observed photophysics, as introduction of electron-releasing aryl groups on the periphery of the macrocycle is manifest in larger emission quantum yields and longer fluorescence lifetimes. Each phlorin displays an intriguing supramolecular chemistry and can bind 2 equiv of fluoride. This binding is allosteric in nature, and the strength of halide binding correlates with the ability of the phlorin to stabilize the buildup of charge. Moreover, fluoride binding to generate complexes of the form 3H(Phl(R))·2F(-) modulates the redox potentials of the parent phlorin. As such, titration of phlorin with a source of fluoride represents a facile method to tune the ability of this class of porphyrinoid to absorb light and engage in redox chemistry.


Asunto(s)
Ácidos Heterocíclicos/química , Fluoruros/química , Ácidos Heterocíclicos/síntesis química , Acilación , Electroquímica , Indicadores y Reactivos , Cinética , Luz , Oxidación-Reducción , Fotoquímica , Espectrofotometría Ultravioleta , Termodinámica
20.
ACS Appl Mater Interfaces ; 15(15): 19634-19645, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-36944180

RESUMEN

As fossil fuels remain a major source of energy throughout the world, developing efficient negative emission technologies, such as direct air capture (DAC), which remove carbon dioxide (CO2) from the air, becomes critical for mitigating climate change. Although all DAC processes involve CO2 transport from air into a sorbent/solvent, through an air-solid or air-liquid interface, the fundamental roles the interfaces play in DAC remain poorly understood. Herein, we study the interfacial behavior of amino acid (AA) solvents used in DAC through a combination of vibrational sum frequency generation spectroscopy and molecular dynamics simulations. This study revealed that the absorption of atmospheric CO2 has antagonistic effects on subsequent capture events that are driven by changes in bulk pH and specific ion effects that feedback on surface organization and interactions. Among the three AAs (leucine, valine, and phenylalanine) studied, we identify and separate behaviors from CO2 loading, chemical changes, variations in pH, and specific ion effects that tune structural and chemical degrees of freedom at the air-aqueous interface. The fundamental mechanistic findings described here are anticipated to enable new approaches to DAC based on exploiting interfaces as a tool to address climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA