Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(33): 10244-10250, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39116288

RESUMEN

The effectiveness of the room-temperature strengthening strategy for aluminum (Al) is compromised at increased temperatures due to grain and precipitate phase coarsening. Overcoming the heightened activity of grain boundaries and dislocations poses a significant challenge in enhancing the high-temperature strength through traditional precipitation strengthening. This study presents novel strengthening strategies that integrate intergranular reinforcements, intragranular reinforcements, refined grain, and stacking faults within an (Al2O3+Al3Ti)/Al composite prepared using sol-gel and powder metallurgy technology. Excellent high-temperature tensile properties are achieved; also, a remarkable fatigue performance at increased temperatures that surpasses those of other existing Al alloys and composites is revealed. These superior characteristics can be attributed to its exceptionally stable microstructure and the synergistic strengthening mechanisms mentioned above. This work offers new insights into designing and fabricating thermally stable Al matrix composites for high-temperature applications.

2.
Adv Mater ; : e2406506, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943609

RESUMEN

The safe service and wide applications of lightweight high-strength aluminum alloys are seriously challenged by diverse environmental corrosion, since high strength and corrosion resistance are mutually exclusive for metals while surface protection cannot provide life-long corrosion resistance. Here, inspired by fish secreting slime from glands to resist external changes, a strategy of incorporating precipitants as the slime into bulk metals using the inner cavity of opened carbon nanotubes (CNTs) as the glands is developed to enable high-strength aluminum alloys with life-long superior corrosion resistance. The resulting material has ultrahigh tensile strength (≈700 MPa) and extraordinary corrosion resistance in acidic, neutral and alkaline media. Notably, it has the highest resistance to intergranular corrosion, exfoliation corrosion and stress-corrosion cracking, compared with all previously reported aluminum alloys, and its corrosion rate is even much lower than that of corrosion-resistant pure aluminum, which results from the pronounced surface enrichment of precipitants released (secreted) from exposed CNTs forming a protective surface film. Such high corrosion resistance is life-long and self-healing due to the on-demand minimal self-supply of the precipitants dispersed throughout the bulk material. This strategy can be readily expanded to other aluminum alloys, and could pave the way for developing corrosion-resistant high-strength metallic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA