Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Neurosci ; 37(9): 2336-2348, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130358

RESUMEN

The superficial dorsal horn is the synaptic termination site for many peripheral sensory fibers of the somatosensory system. A wide range of sensory modalities are represented by these fibers, including pain, itch, and temperature. Because the involvement of local inhibition in the dorsal horn, specifically that mediated by the inhibitory amino acids GABA and glycine, is so important in signal processing, we investigated regional inhibitory control of excitatory interneurons under control conditions and peripheral inflammation-induced mechanical allodynia. We found that excitatory interneurons and projection neurons in lamina I and IIo are dominantly inhibited by GABA while those in lamina IIi and III are dominantly inhibited by glycine. This was true of identified neuronal subpopulations: neurokinin 1 receptor-expressing (NK1R+) neurons in lamina I were GABA-dominant while protein kinase C gamma-expressing (PKCγ+) neurons at the lamina IIi-III border were glycine-dominant. We found this pattern of synaptic inhibition to be consistent with the distribution of GABAergic and glycinergic neurons identified by immunohistochemistry. Following complete Freund's adjuvant injection into mouse hindpaw, the frequency of spontaneous excitatory synaptic activity increased and inhibitory synaptic activity decreased. Surprisingly, these changes were accompanied by an increase in GABA dominance in lamina IIi. Because this shift in inhibitory dominance was not accompanied by a change in the number of inhibitory synapses or the overall postsynaptic expression of glycine receptor α1 subunits, we propose that the dominance shift is due to glycine receptor modulation and the depressed function of glycine receptors is partially compensated by GABAergic inhibition.SIGNIFICANCE STATEMENT Pain associated with inflammation is a sensation we would all like to minimize. Persistent inflammation leads to cellular and molecular changes in the spinal cord dorsal horn, including diminished inhibition, which may be responsible for enhance excitability. Investigating inhibition in the dorsal horn following peripheral inflammation is essential for development of improved ways to control the associated pain. In this study, we have elucidated regional differences in inhibition of excitatory interneurons in mouse dorsal horn. We have also discovered that the dominating inhibitory neurotransmission within specific regions of dorsal horn switches following peripheral inflammation and the accompanying hypersensitivity to thermal and mechanical stimuli. Our novel findings contribute to a more complete understanding of inflammatory pain.


Asunto(s)
Inflamación/patología , Inhibición Neural/fisiología , Células del Asta Posterior/fisiología , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Médula Espinal/citología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Adyuvante de Freund/toxicidad , Glicina/farmacología , Hiperalgesia/fisiopatología , Técnicas In Vitro , Inflamación/inducido químicamente , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Masculino , Ratones , Inhibición Neural/efectos de los fármacos , Dimensión del Dolor/efectos de los fármacos , Células del Asta Posterior/efectos de los fármacos , Proteína Quinasa C/metabolismo , Receptores de Neuroquinina-1/metabolismo , Potenciales Sinápticos/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
2.
J Neurosci ; 34(33): 10808-20, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-25122884

RESUMEN

NMDA receptors are important elements in pain signaling in the spinal cord dorsal horn. They are heterotetramers, typically composed of two GluN1 and two of four GluN2 subunits: GluN2A-2D. Mice lacking some of the GluN2 subunits show deficits in pain transmission yet functional synaptic localization of these receptor subtypes in the dorsal horn has not been fully resolved. In this study, we have investigated the composition of synaptic NMDA receptors expressed in monosynaptic and polysynaptic pathways from peripheral sensory fibers to lamina I neurons in rats. We focused on substance P receptor-expressing (NK1R+) projection neurons, critical for expression of hyperalgesia and allodynia. EAB-318 and (R)-CPP, GluN2A/B antagonists, blocked both monosynaptic and polysynaptic NMDA EPSCs initiated by primary afferent activation by ∼90%. Physiological measurements exploiting the voltage dependence of monosynaptic EPSCs similarly indicated dominant expression of GluN2A/B types of synaptic NMDA receptors. In addition, at synapses between C fibers and NK1R+ neurons, NMDA receptor activation initiated a secondary, depolarizing current. Ifenprodil, a GluN2B antagonist, caused modest suppression of monosynaptic NMDA EPSC amplitudes, but had a widely variable, sometimes powerful, effect on polysynaptic responses following primary afferent stimulation when inhibitory inputs were blocked to mimic neuropathic pain. We conclude that GluN2B subunits are moderately expressed at primary afferent synapses on lamina I NK1R+ neurons, but play more important roles for polysynaptic NMDA EPSCs driven by primary afferents following disinhibition, supporting the view that the analgesic effect of the GluN2B antagonist on neuropathic pain is at least in part, within the spinal cord.


Asunto(s)
Células del Asta Posterior/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Asta Dorsal de la Médula Espinal/fisiología , Transmisión Sináptica/fisiología , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Neuralgia/metabolismo , Piperidinas/farmacología , Células del Asta Posterior/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de Neuroquinina-1/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos
3.
Mol Pain ; 11: 64, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26463733

RESUMEN

BACKGROUND: Presynaptic GABAA receptors (GABAARs) located on central terminals of low threshold afferent fibers are thought to be involved in the processing of touch and possibly in the generation of tactile allodynia in chronic pain. These GABAARs mediate primary afferent depolarization (PAD) and modulate transmitter release. The objective of this study was to expand our understanding of the presynaptic inhibitory action of GABA released onto primary afferent central terminals following afferent stimulation. RESULTS: We recorded evoked postsynaptic excitatory responses (eEPSCs and eEPSPs) from lamina III/IV neurons in spinal cord slices from juvenile rats (P17-P23, either sex), while stimulating dorsal roots. We investigated time and activity dependent changes in glutamate release from low threshold A fibers and the impact of these changes on excitatory drive. Blockade of GABAARs by gabazine potentiated the second eEPSC during a train of four afferent stimuli in a large subset of synapses. This resulted in a corresponding increase of action potential firing after the second stimulus. The potentiating effect of gabazine was due to inhibition of endogenously activated presynaptic GABAARs, because it was not prevented by the blockade of postsynaptic GABAARs through intracellular perfusion of CsF. Exogenous activation of presynaptic GABAARs by muscimol depressed evoked glutamate release at all synapses and increased paired pulse ratio (PPR). CONCLUSIONS: These observations suggest that afferent driven release of GABA onto low threshold afferent terminals is most effective following the first action potential in a train and serves to suppress the initial strong excitatory drive onto dorsal horn circuitry.


Asunto(s)
Neuronas Aferentes/metabolismo , Neurotransmisores/metabolismo , Receptores de GABA-A/metabolismo , Umbral Sensorial , Asta Dorsal de la Médula Espinal/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Masculino , Modelos Neurológicos , Muscimol/farmacología , Neuronas Aferentes/efectos de los fármacos , Piridazinas/farmacología , Ratas Sprague-Dawley , Receptores de Glicina/metabolismo , Umbral Sensorial/efectos de los fármacos , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
4.
J Neurosci ; 33(37): 14825-39, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24027283

RESUMEN

We used a mouse model of the schizophrenia-predisposing 22q11.2 microdeletion to evaluate how this genetic lesion affects cortical neural circuits at the synaptic, cellular, and molecular levels. Guided by cognitive deficits, we demonstrated that mutant mice display robust deficits in high-frequency synaptic transmission and short-term plasticity (synaptic depression and potentiation), as well as alterations in long-term plasticity and dendritic spine stability. Apart from previously reported reduction in dendritic complexity of layer 5 pyramidal neurons, altered synaptic plasticity occurs in the context of relatively circumscribed and often subtle cytoarchitectural changes in neuronal density and inhibitory neuron numbers. We confirmed the pronounced DiGeorge critical region 8 (Dgcr8)-dependent deficits in primary micro-RNA processing and identified additional changes in gene expression and RNA splicing that may underlie the effects of this mutation. Reduction in Dgcr8 levels appears to be a major driver of altered short-term synaptic plasticity in prefrontal cortex and working memory but not of long-term plasticity and cytoarchitecture. Our findings inform the cortical synaptic and neuronal mechanisms of working memory impairment in the context of psychiatric disorders. They also provide insight into the link between micro-RNA dysregulation and genetic liability to schizophrenia and cognitive dysfunction.


Asunto(s)
Síndrome de DiGeorge/patología , Potenciación a Largo Plazo/genética , Depresión Sináptica a Largo Plazo/genética , Neuronas/fisiología , Corteza Prefrontal/patología , Animales , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/genética , Espinas Dendríticas/patología , Espinas Dendríticas/ultraestructura , Síndrome de DiGeorge/complicaciones , Síndrome de DiGeorge/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Fosfopiruvato Hidratasa/metabolismo , Proteínas/genética , Proteínas de Unión al ARN , Reconocimiento en Psicología/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(11): 4447-52, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21368174

RESUMEN

Individuals with 22q11.2 microdeletions have cognitive and behavioral impairments and the highest known genetic risk for developing schizophrenia. One gene disrupted by the 22q11.2 microdeletion is DGCR8, a component of the "microprocessor" complex that is essential for microRNA production, resulting in abnormal processing of specific brain miRNAs and working memory deficits. Here, we determine the effect of Dgcr8 deficiency on the structure and function of cortical circuits by assessing their laminar organization, as well as the neuronal morphology, and intrinsic and synaptic properties of layer 5 pyramidal neurons in the prefrontal cortex of Dgcr8(+/-) mutant mice. We found that heterozygous Dgcr8 mutant mice have slightly fewer cortical layer 2/4 neurons and that the basal dendrites of layer 5 pyramidal neurons have slightly smaller spines. In addition to the modest structural changes, field potential and whole-cell electrophysiological recordings performed in layer 5 of the prefrontal cortex revealed greater short-term synaptic depression during brief stimulation trains applied at 50 Hz to superficial cortical layers. This finding was accompanied by a decrease in the initial phase of synaptic potentiation. Our results identify altered short-term plasticity as a neural substrate underlying the cognitive dysfunction and the increased risk for schizophrenia associated with the 22q11.2 microdeletions.


Asunto(s)
Eliminación de Gen , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiopatología , Proteínas/metabolismo , Animales , Región CA1 Hipocampal/fisiopatología , Región CA3 Hipocampal/fisiopatología , Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Corteza Prefrontal/patología , Proteínas de Unión al ARN , Sinapsis/metabolismo , Factores de Tiempo
6.
Proc Natl Acad Sci U S A ; 108(49): E1349-58, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22049344

RESUMEN

Carefully designed animal models of genetic risk factors are likely to aid our understanding of the pathogenesis of schizophrenia. Here, we study a mouse strain with a truncating lesion in the endogenous Disc1 ortholog designed to model the effects of a schizophrenia-predisposing mutation and offer a detailed account of the consequences that this mutation has on the development and function of a hippocampal circuit. We uncover widespread and cumulative cytoarchitectural alterations in the dentate gyrus during neonatal and adult neurogenesis, which include errors in axonal targeting and are accompanied by changes in short-term plasticity at the mossy fiber/CA3 circuit. We also provide evidence that cAMP levels are elevated as a result of the Disc1 mutation, leading to altered axonal targeting and dendritic growth. The identified structural alterations are, for the most part, not consistent with the growth-promoting and premature maturation effects inferred from previous RNAi-based Disc1 knockdown. Our results provide support to the notion that modest disturbances of neuronal connectivity and accompanying deficits in short-term synaptic dynamics is a general feature of schizophrenia-predisposing mutations.


Asunto(s)
Axones/metabolismo , Hipocampo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Potenciales de Acción , Animales , Animales Recién Nacidos , Proliferación Celular , Células Cultivadas , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Dendritas/metabolismo , Dendritas/fisiología , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/metabolismo , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Inmunohistoquímica , Potenciación a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fibras Musgosas del Hipocampo/metabolismo , Proteínas del Tejido Nervioso/genética , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp
7.
Mol Cell Neurosci ; 47(4): 293-305, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21635953

RESUMEN

22q11.2 chromosomal deletions are recurrent copy number mutations that increase the risk of schizophrenia around thirty-fold. Deletion of the orthologous chromosomal region in mice offers an opportunity to characterize changes to neuronal structure and function that may account for the development of this disease. The hippocampus has been implicated in schizophrenia pathogenesis, is reduced in volume in 22q11.2 deletion carriers and displays altered neuronal structure in a mouse model of the mutation (Df(16)A(+/-) mice). Here we investigate hippocampal CA1 physiology, hippocampal-dependent spatial memory and novelty-induced hippocampal activation in Df(16)A(+/-) mice. We found normal spatial reference memory (as assayed by the Morris water maze test) as well as modest but potentially important deficits in physiology. In particular, a reduction in the level of inhibition of CA1 pyramidal neurons was observed, implying a decrease in interneuron activity. Additionally, deficits in LTP were observed using certain induction protocols. Induction of c-Fos expression by exploration of a novel environment suggested a relative sparing of CA1 and dentate gyrus function but showed a robust decrease in the number of activated CA3 pyramidal neurons in Df(16)A(+/-) mice. Overall, experiments performed in this 22q11.2 deletion model demonstrated deficits of various degrees across different regions of the hippocampus, which together may contribute to the increased risk of developing schizophrenia.


Asunto(s)
Deleción Cromosómica , Hipocampo/fisiología , Modelos Animales , Potenciales de Acción/fisiología , Animales , Cromosomas Humanos Par 22 , Humanos , Interneuronas/metabolismo , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/fisiología , Técnicas de Placa-Clamp , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Riesgo , Esquizofrenia/genética
8.
Proc Natl Acad Sci U S A ; 105(19): 7076-81, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18458327

RESUMEN

DISC1 is a strong candidate susceptibility gene for schizophrenia, bipolar disorder, and depression. Using a mouse strain carrying an endogenous Disc1 orthologue engineered to model the putative effects of the disease-associated chromosomal translocation we demonstrate that impaired Disc1 function results in region-specific morphological alterations, including alterations in the organization of newly born and mature neurons of the dentate gyrus. Field recordings at CA3/CA1 synapses revealed a deficit in short-term plasticity. Using a battery of cognitive tests we found a selective impairment in working memory (WM), which may relate to deficits in WM and executive function observed in individuals with schizophrenia. Our results implicate malfunction of neural circuits within the hippocampus and medial prefrontal cortex and selective deficits in WM as contributing to the genetic risk conferred by this gene.


Asunto(s)
Alelos , Cognición , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuronas/patología , Esquizofrenia/genética , Animales , Diferenciación Celular , Trastornos del Conocimiento/patología , Giro Dentado/patología , Modelos Animales de Enfermedad , Memoria , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Corteza Prefrontal/patología , Factores de Riesgo , Transmisión Sináptica
9.
J Neurosci ; 29(3): 686-95, 2009 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-19158295

RESUMEN

Inhibition in the spinal cord dorsal horn is crucial for maintaining separation of touch and pain modalities. Disruption of this inhibition results in allodynia, allowing low-threshold drive onto pain and temperature-sensitive projection neurons. This low-threshold (LT) excitatory pathway is normally under strong inhibition. We hypothesized that superficial dorsal horn inhibitory neurons, which would be ideally located to suppress LT drive onto projection neurons in a feedforward manner, are driven by LT input. In addition, because disinhibition-induced allodynia shares some features with the immature dorsal horn such as elevated sensitivity to LT input, we also questioned whether LT drive onto inhibitory neurons changes during postnatal maturation. To investigate these questions, slices were made at different ages from transgenic mice with enhanced green fluorescent protein expression in GABAergic neurons and whole-cell recordings were made from these fluorescent neurons. Evoked synaptic activity was measured in response to electrical stimulation of the dorsal root. We demonstrate that Abeta fibers activate a significant proportion of superficial dorsal horn GABAergic neurons. This occurs with similar excitatory synaptic drive throughout postnatal maturation, but with a greater prevalence at younger ages. These GABAergic neurons are well situated to contribute to suppressing LT activation of output projection neurons. In addition, the majority of these GABAergic neurons also had convergent input from high-threshold fibers, suggesting that this novel subclass of GABAergic neurons is important for gating innocuous as well as noxious information.


Asunto(s)
Interneuronas/fisiología , Células del Asta Posterior/fisiología , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Fenómenos Biofísicos , Estimulación Eléctrica/métodos , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/clasificación , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Ratones Transgénicos , Fibras Nerviosas Mielínicas/fisiología , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Médula Espinal/citología
10.
J Physiol ; 588(Pt 14): 2571-87, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20498232

RESUMEN

Inhibition mediated by glycine and GABA in the spinal cord dorsal horn is essential for controlling sensitivity to painful stimuli. Loss of inhibition results in hyperalgesia, a sensitized response to a painful stimulus, and allodynia, a pain-like response to an innocuous stimulus like touch. The latter is due, in part, to disinhibition of an excitatory polysynaptic pathway linking low threshold touch input to pain projection neurons. This critical impact of disinhibition raises the issue of what regulates the activity of inhibitory interneurons in the dorsal horn under non-pathological conditions. We have found that inhibitory neurons throughout lamina I-III, identified by the GAD67 promoter-driven EGFP, are tonically inhibited by glycine or GABA in a regionally distinct way that is mirrored by their inhibitory synaptic input. This tonic inhibition strongly modifies action potential firing properties. Surprisingly, we found that inhibitory neurons at the lamina II/III border are under tonic glycinergic control and receive synapses that are predominantly glycinergic. Futhermore, this tonic glycinergic inhibition remains strong as the mice mature postnatally. Interestingly, GlyT1, the glial glycine transporter, regulates the strength of tonic glycinergic inhibition of these glycine-dominant neurons. The more dorsal lamina I and IIo inhibitory neurons are mainly under control by tonic GABA action and receive synapses that are predominantly GABAergic. Our work supports the hypothesis that tonic glycine inhibition controls the inhibitory circuitry deep in lamina II that is likely to be responsible for separating low threshold input from high threshold output neurons of lamina I.


Asunto(s)
Glicina/fisiología , Interneuronas/fisiología , Inhibición Neural/fisiología , Células del Asta Posterior/fisiología , Ácido gamma-Aminobutírico/fisiología , Potenciales de Acción/fisiología , Animales , Proteínas de Transporte de Glicina en la Membrana Plasmática/fisiología , Ratones , Ratones Transgénicos , Células del Asta Posterior/crecimiento & desarrollo
11.
Mol Pain ; 6: 26, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20459616

RESUMEN

BACKGROUND: NMDA receptors expressed by spinal cord neurons in the superficial dorsal horn are involved in the development of chronic pain associated with inflammation and nerve injury. The superficial dorsal horn has a complex and still poorly understood circuitry that is mainly populated by inhibitory and excitatory interneurons. Little is known about how NMDA receptor subunit composition, and therefore pharmacology and voltage dependence, varies with neuronal cell type. NMDA receptors are typically composed of two NR1 subunits and two of four NR2 subunits, NR2A-2D. We took advantage of the differences in Mg2+ sensitivity of the NMDA receptor subtypes together with subtype preferring antagonists to identify the NR2 subunit composition of NMDA receptors expressed on lamina II inhibitory and excitatory interneurons. To distinguish between excitatory and inhibitory interneurons, we used transgenic mice expressing enhanced green fluorescent protein driven by the GAD67 promoter. RESULTS: Analysis of conductance ratio and selective antagonists showed that lamina II GABAergic interneurons express both the NR2A/B containing Mg2+ sensitive receptors and the NR2C/D containing NMDA receptors with less Mg2+ sensitivity. In contrast, excitatory lamina II interneurons express primarily NR2A/B containing receptors. Despite this clear difference in NMDA receptor subunit expression in the two neuronal populations, focally stimulated synaptic input is mediated exclusively by NR2A and 2B containing receptors in both neuronal populations. CONCLUSIONS: Stronger expression of NMDA receptors with NR2C/D subunits by inhibitory interneurons compared to excitatory interneurons may provide a mechanism to selectively increase activity of inhibitory neurons during intense excitatory drive that can provide inhibitory feedback.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Interneuronas/metabolismo , Células del Asta Posterior/citología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Potenciales Postsinápticos Excitadores/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Potenciales Postsinápticos Inhibidores/genética , Ratones , Receptores de N-Metil-D-Aspartato/genética
13.
Neuron ; 44(4): 577-8, 2004 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-15541304

RESUMEN

The role of Ca(2+)-permeable AMPA receptors in pain processing has not been extensively studied. In this issue of Neuron, Hartmann et al. show that altering the levels of these receptors has consequences for inflammatory pain hypersensitivity but not acute pain processing.


Asunto(s)
Dolor/fisiopatología , Receptores AMPA/fisiología , Animales , Humanos , Inflamación/complicaciones , Inflamación/fisiopatología , Nociceptores/fisiología , Dolor/etiología
14.
Neuron ; 35(1): 135-46, 2002 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12123614

RESUMEN

No direct evidence has been found for expression of functional AMPA receptors by dorsal root ganglion neurons despite immunocytochemical evidence suggesting they are present. Here we report evidence for expression of functional AMPA receptors by a subpopulation of dorsal root ganglion neurons. The AMPA receptors are most prominently located near central terminals of primary afferent fibers. AMPA and kainate receptors were detected by recording receptor-mediated depolarization of the central terminals under selective pharmacological conditions. We demonstrate that activation of presynaptic AMPA receptors by exogenous agonists causes inhibition of glutamate release from the terminals, possibly via primary afferent depolarization (PAD). These results challenge the traditional view that GABA and GABA(A) receptors exclusively mediate PAD, and indicate that PAD is also mediated by glutamate acting on presynaptically localized AMPA and kainate receptors.


Asunto(s)
Ganglios Espinales/metabolismo , Ácido Glutámico/metabolismo , Glicoproteínas de Membrana , Inhibición Neural/fisiología , Neuronas Aferentes/metabolismo , Terminales Presinápticos/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Vías Aferentes/citología , Vías Aferentes/efectos de los fármacos , Vías Aferentes/metabolismo , Animales , Animales Recién Nacidos , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Células Cultivadas , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Antagonistas de Receptores de GABA-A , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Proteínas de Filamentos Intermediarios/metabolismo , Lectinas , Proteínas del Tejido Nervioso/metabolismo , Inhibición Neural/efectos de los fármacos , Neuronas Aferentes/citología , Neuronas Aferentes/efectos de los fármacos , Periferinas , Terminales Presinápticos/efectos de los fármacos , Ratas , Receptores AMPA/efectos de los fármacos , Receptores AMPA/ultraestructura , Receptores de GABA-A/metabolismo , Raíces Nerviosas Espinales/citología , Raíces Nerviosas Espinales/efectos de los fármacos , Raíces Nerviosas Espinales/metabolismo , Transmisión Sináptica/efectos de los fármacos
15.
Mol Pain ; 4: 44, 2008 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-18847474

RESUMEN

NMDA receptors are important elements in pain signaling in the spinal cord dorsal horn. They are heterotetramers typically composed of two NR1 and two of four NR2 subunits: NR2A-2D. Mice lacking specific NR2 subunits show deficits in pain transmission yet subunit location in the spinal cord remains unclear. We have combined electrophysiological and pharmacological approaches to investigate the composition of functional NMDA receptors expressed by lamina I, substance P receptor-expressing (NK1R+) neurons, as well as NK1R- neurons. Under low Mg2+ conditions (100 microM), the conductance of NMDA receptors at -90 mV (g(-90 mV)) with NR2A or NR2B subunits (NR2A/B) is low compared to conductance measured at the membrane potential where the inward current is maximal or maximal inward current (MIC) (ratio of approximately 0.07 calculated from Kuner and Schoepfer, 1996). For NR2C or NR2D subunits (NR2C/D), the ratio is higher (ratio approximately 0.4). NK1R+ and NK1R- neurons express NMDA receptors that give ratios approximately 0.28 and 0.16, respectively, suggesting both types of subunits are present in both populations of neurons, with NK1R+ neurons expressing a higher percentage of NR2C/D type NMDA receptors. This was confirmed using EAB318, an NR2A/B preferring antagonist, and UBP141, a mildly selective NR2C/D antagonist to increase and decrease the g(-90 mV)/g(MIC) ratios in both subpopulations of neurons.


Asunto(s)
Neuronas/metabolismo , Células del Asta Posterior/metabolismo , Subunidades de Proteína/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Receptores de Neuroquinina-1/metabolismo , Animales , Magnesio/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo
16.
J Neurosci ; 26(6): 1833-43, 2006 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-16467532

RESUMEN

Blockade of local spinal cord inhibition mimics the behavioral hypersensitivity that manifests in chronic pain states. This suggests that there is a pathway capable of mediating allodynia/hyperalgesia that exists but is normally under strong inhibitory control. Lamina I and III neurokinin 1 (NK1) receptor expressing (NK1R+) dorsal horn neurons, many of which are projection neurons, are required for the development of this hypersensitivity and are therefore likely to be a component of this proposed pathway. To investigate, whole-cell patch-clamp recordings were made from lamina I and III NK1R+ neurons in the spinal cord slice preparation with attached dorsal root. Excitatory postsynaptic currents were recorded in response to electrical stimulation of the dorsal root. Lamina I NK1R+ neurons were shown to receive high-threshold (Adelta/C fiber) monosynaptic input, whereas lamina III NK1R+ neurons received low-threshold (Abeta fiber) monosynaptic input. In contrast, lamina I neurons lacking NK1 receptor (NK1R-) received polysynaptic A fiber input. Blockade of local GABAergic and glycinergic inhibition with bicuculline (10 microm) and strychnine (300 nm), respectively, revealed significant A fiber input to lamina I NK1R+ neurons that was predominantly Abeta fiber mediated. This novel A fiber input was polysynaptic in nature and required NMDA receptor activity to be functional. In lamina I NK1R- and lamina III NK1R+ neurons, disinhibition enhanced control-evoked responses, and this was also NMDA receptor dependent. These disinhibition-induced changes, in particular the novel polysynaptic low-threshold input onto lamina I NK1R+ neurons, may be an underlying component of the hypersensitivity present in chronic pain states.


Asunto(s)
Neuronas/fisiología , Nociceptores/fisiología , Dolor/fisiopatología , Receptores de Neuroquinina-1/fisiología , Médula Espinal/fisiopatología , Vías Aferentes/fisiopatología , Animales , Eliminación de Gen , Técnicas In Vitro , Ratas , Receptores de Neuroquinina-1/deficiencia , Receptores de Neuroquinina-1/genética , Umbral Sensorial , Transducción de Señal
17.
Mol Pain ; 2: 17, 2006 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-16681857

RESUMEN

BACKGROUND: The complex neuronal circuitry of the dorsal horn of the spinal cord is as yet poorly understood. However, defining the circuits underlying the transmission of information from primary afferents to higher levels is critical to our understanding of sensory processing. In this study, we have examined phosphodiesterase 1C (Pde1c) BAC transgenic mice in which a green fluorescent protein (GFP) reporter gene reflects Pde1c expression in sensory neuron subpopulations in the dorsal root ganglia and spinal cord. RESULTS: Using double labeling immunofluorescence, we demonstrate GFP expression in specific subpopulations of primary sensory neurons and a distinct neuronal expression pattern within the spinal cord dorsal horn. In the dorsal root ganglia, their distribution is restricted to those subpopulations of primary sensory neurons that give rise to unmyelinated C fibers (neurofilament 200 negative). A small proportion of both non-peptidergic (IB4-binding) and peptidergic (CGRP immunoreactive) subclasses expressed GFP. However, GFP expression was more common in the non-peptidergic than the peptidergic subclass. GFP was also expressed in a subpopulation of the primary sensory neurons immunoreactive for the vanilloid receptor TRPV1 and the ATP-gated ion channel P2X3. In the spinal cord dorsal horn, GFP positive neurons were largely restricted to lamina I and to a lesser extent lamina II, but surprisingly did not coexpress markers for key neuronal populations present in the superficial dorsal horn. CONCLUSION: The expression of GFP in subclasses of nociceptors and also in dorsal horn regions densely innervated by nociceptors suggests that Pde1c marks a unique subpopulation of nociceptive sensory neurons.


Asunto(s)
Ganglios Espinales/enzimología , Proteínas Fluorescentes Verdes/genética , Neuronas Aferentes/enzimología , Nociceptores/enzimología , Hidrolasas Diéster Fosfóricas/genética , Células del Asta Posterior/enzimología , Animales , Biomarcadores/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1 , Técnica del Anticuerpo Fluorescente , Ganglios Espinales/citología , Genes Reporteros/genética , Ratones , Ratones Transgénicos , Fibras Nerviosas Amielínicas/enzimología , Fibras Nerviosas Amielínicas/ultraestructura , Neuronas Aferentes/citología , Nociceptores/citología , Dolor/enzimología , Dolor/genética , Dolor/fisiopatología , Células del Asta Posterior/citología , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X3 , Canales Catiónicos TRPV/genética
19.
J Neurosci ; 24(11): 2774-81, 2004 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-15028770

RESUMEN

NMDA receptors have the potential to produce complex activity-dependent regulation of transmitter release when localized presynaptically. In the somatosensory system, NMDA receptors have been immunocytochemically detected on presynaptic terminals of primary afferents, and these have been proposed to drive release of substance P from central terminals of a subset of nociceptors in the spinal cord dorsal horn. Here we report that functional NMDA receptors are indeed present at or near the central terminals of primary afferent fibers. Furthermore, we show that activation of these presynaptic receptors results in an inhibition of glutamate release from the terminals. Some of these NMDA receptors may be expressed in the preterminal axon and regulate the extent to which action potentials invade the extensive central arborizations of primary sensory neurons.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas Aferentes/metabolismo , Células del Asta Posterior/metabolismo , Terminales Presinápticos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Potenciales de Acción/fisiología , Animales , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , N-Metilaspartato/farmacología , Neuronas Aferentes/efectos de los fármacos , Técnicas de Placa-Clamp , Células del Asta Posterior/efectos de los fármacos , Ratas
20.
Mol Pain ; 1: 1, 2005 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-15813987

RESUMEN

Molecular pain is a relatively new and rapidly expanding research field that represents an advanced step from conventional pain research. Molecular pain research addresses physiological and pathological pain at the cellular, subcellular and molecular levels. These studies integrate pain research with molecular biology, genomics, proteomics, modern electrophysiology and neurobiology. The field of molecular pain research has been rapidly expanding in the recent years, and has great promise for the identification of highly specific and effective targets for the treatment of intractable pain. Although several existing journals publish articles on classical pain research, none are specifically dedicated to molecular pain research. Therefore, a new journal focused on molecular pain research is needed. Molecular Pain, an Open Access, peer-reviewed, online journal, will provide a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.


Asunto(s)
Investigación Biomédica/tendencias , Medicina/tendencias , Dolor/tratamiento farmacológico , Dolor/metabolismo , Farmacología/tendencias , Humanos , Publicaciones Seriadas/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA