Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Regul Toxicol Pharmacol ; 98: 98-107, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30026135

RESUMEN

Nonclinical safety testing of biopharmaceuticals can present significant challenges to human risk assessment with these innovative and often complex drugs. Emerging topics in this field were discussed recently at the 2016 Annual US BioSafe General Membership meeting. The presentations and subsequent discussions from the main sessions are summarized. The topics covered included: (i) specialty biologics (oncolytic virus, gene therapy, and gene editing-based technologies), (ii) the value of non-human primates (NHPs) for safety assessment, (iii) challenges in the safety assessment of immuno-oncology drugs (T cell-dependent bispecifics, checkpoint inhibitors, and costimulatory agonists), (iv) emerging therapeutic approaches and modalities focused on microbiome, oligonucleotide, messenger ribonucleic acid (mRNA) therapeutics, (v) first in human (FIH) dose selection and the minimum anticipated biological effect level (MABEL), (vi) an update on current regulatory guidelines, International Council for Harmonization (ICH) S1, S3a, S5, S9 and S11 and (vii) breakout sessions that focused on bioanalytical and PK/PD challenges with bispecific antibodies, cytokine release in nonclinical studies, determining adversity and NOAEL for biologics, the value of second species for toxicology assessment and what to do if there is no relevant toxicology species.


Asunto(s)
Productos Biológicos/toxicidad , Evaluación Preclínica de Medicamentos/métodos , Animales , Anticuerpos Monoclonales/toxicidad , Tratamiento Basado en Trasplante de Células y Tejidos , Terapia Genética , Humanos , Proteínas Recombinantes/toxicidad , Medición de Riesgo
2.
Toxicol Pathol ; 38(7): 1138-66, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20926828

RESUMEN

Tissue cross-reactivity (TCR) studies are screening assays recommended for antibody and antibody-like molecules that contain a complementarity-determining region (CDR), primarily to identify off-target binding and, secondarily, to identify sites of on-target binding that were not previously identified. At the present time, TCR studies involve the ex vivo immunohistochemical (IHC) staining of a panel of frozen tissues from humans and animals, are conducted prior to dosing humans, and results are filed with the initial IND/CTA to support first-in-human clinical trials. In some cases, a robust TCR assay cannot be developed, and in these cases the lack of a TCR assay should not prevent a program from moving forward. The TCR assay by itself has variable correlation with toxicity or efficacy. Therefore, any findings of interest should be further evaluated and interpreted in the context of the overall pharmacology and safety assessment data package. TCR studies are generally not recommended for surrogate molecules or for comparability assessments in the context of manufacturing/cell line changes. Overall, the design, implementation, and interpretation of TCR studies should follow a case-by-case approach.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Reacciones Cruzadas/inmunología , Evaluación Preclínica de Medicamentos/métodos , Animales , Anticuerpos Monoclonales/farmacología , Sitios de Unión de Anticuerpos , Diseño de Fármacos , Descubrimiento de Drogas , Humanos , Inmunohistoquímica/métodos
3.
J Assoc Res Otolaryngol ; 18(4): 601-617, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28646272

RESUMEN

Sensorineural losses of hearing and vestibular sensation due to hair cell dysfunction are among the most common disabilities. Recent preclinical research demonstrates that treatment of the inner ear with a variety of compounds, including gene therapy agents, may elicit regeneration and/or repair of hair cells in animals exposed to ototoxic medications or other insults to the inner ear. Delivery of gene therapy may also offer a means for treatment of hereditary hearing loss. However, injection of a fluid volume sufficient to deliver an adequate dose of a pharmacologic agent could, in theory, cause inner ear trauma that compromises functional outcome. The primary goal of the present study was to assess that risk in rhesus monkeys, which closely approximates humans with regard to middle and inner ear anatomy. Secondary goals were to identify the best delivery route into the primate ear from among two common surgical approaches (i.e., via an oval window stapedotomy and via the round window) and to determine the relative volumes of rhesus, rodent, and human labyrinths for extrapolation of results to other species. We measured hearing and vestibular functions before and 2, 4, and 8 weeks after unilateral injection of phosphate-buffered saline vehicle (PBSV) into the perilymphatic space of normal rhesus monkeys at volumes sufficient to deliver an atoh1 gene therapy vector. To isolate effects of injection, PBSV without vector was used. Assays included behavioral observation, auditory brainstem responses, distortion product otoacoustic emissions, and scleral coil measurement of vestibulo-ocular reflexes during whole-body rotation in darkness. Three groups (N = 3 each) were studied. Group A received a 10 µL transmastoid/trans-stapes injection via a laser stapedotomy. Group B received a 10 µL transmastoid/trans-round window injection. Group C received a 30 µL transmastoid/trans-round window injection. We also measured inner ear fluid space volume via 3D reconstruction of computed tomography (CT) images of adult C57BL6 mouse, rat, rhesus macaque, and human temporal bones (N = 3 each). Injection was well tolerated by all animals, with eight of nine exhibiting no signs of disequilibrium and one animal exhibiting transient disequilibrium that resolved spontaneously by 24 h after surgery. Physiologic results at the final, 8-week post-injection measurement showed that injection was well tolerated. Compared to its pretreatment values, no treated ear's ABR threshold had worsened by more than 5 dB at any stimulus frequency; distortion product otoacoustic emissions remained detectable above the noise floor for every treated ear (mean, SD and maximum deviation from baseline: -1.3, 9.0, and -18 dB, respectively); and no animal exhibited a reduction of more than 3 % in vestibulo-ocular reflex gain during high-acceleration, whole-body, passive yaw rotations in darkness toward the treated side. All control ears and all operated ears with definite histologic evidence of injection through the intended site showed similar findings, with intact hair cells in all five inner ear sensory epithelia and intact auditory/vestibular neurons. The relative volumes of mouse, rat, rhesus, and human inner ears as measured by CT were (mean ± SD) 2.5 ± 0.1, 5.5 ± 0.4, 59.4 ± 4.7 and 191.1 ± 4.7 µL. These results indicate that injection of PBSV at volumes sufficient for gene therapy delivery can be accomplished without destruction of inner ear structures required for hearing and vestibular sensation.


Asunto(s)
Oído Interno , Potenciales Evocados Auditivos del Tronco Encefálico , Inyecciones/efectos adversos , Reflejo Vestibuloocular , Animales , Oído Interno/diagnóstico por imagen , Oído Interno/patología , Terapia Genética/métodos , Pérdida Auditiva Sensorineural/terapia , Humanos , Inyecciones/métodos , Macaca mulatta , Ratones Endogámicos C57BL , Tamaño de los Órganos , Ratas Wistar , Enfermedades Vestibulares/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA