Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 113(16): 166401, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25361270

RESUMEN

The formation of heavy-fermion bands can occur by means of the conversion of a periodic array of local moments into itinerant electrons via the Kondo effect and the huge consequent Fermi-liquid renormalizations. Leggett predicted for liquid (3)He that Fermi-liquid renormalizations change in the superconducting state, leading to a temperature dependence of the London penetration depth Λ quite different from that in BCS theory. Using Leggett's theory, as modified for heavy fermions, it is possible to extract from the measured temperature dependence of Λ in high quality samples both Landau parameters F(0)(s) and F(1)(s); this has never been accomplished before. A modification of the temperature dependence of the electronic specific heat C(el), related to that of Λ, is also expected. We have carefully determined the magnitude and temperature dependence of Λ in CeCoIn(5) by muon spin relaxation rate measurements to obtain F(0)(s) = 36 ± 1 and F(1)(s) = 1.2 ± 0.3, and we find a consistent change in the temperature dependence of C(el). This, the first determination of F(1)(s) with a value ≪ F(0)(s) in a heavy-fermion compound, tests the basic assumption of the theory of heavy fermions, that the frequency dependence of the self-energy is much more important than its momentum dependence.

2.
Proc Natl Acad Sci U S A ; 107(40): 17131-4, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20855579

RESUMEN

The doping of charge carriers into the CuO(2) planes of copper oxide Mott insulators causes a gradual destruction of antiferromagnetism and the emergence of high-temperature superconductivity. Optimal superconductivity is achieved at a doping concentration p beyond which further increases in doping cause a weakening and eventual disappearance of superconductivity. A potential explanation for this demise is that ferromagnetic fluctuations compete with superconductivity in the overdoped regime. In this case, a ferromagnetic phase at very low temperatures is predicted to exist beyond the doping concentration at which superconductivity disappears. Here we report on a direct examination of this scenario in overdoped La(2-x)Sr(x)CuO(4) using the technique of muon spin relaxation. We detect the onset of static magnetic moments of electronic origin at low temperature in the heavily overdoped nonsuperconducting region. However, the magnetism does not exist in a commensurate long-range ordered state. Instead it appears as a dilute concentration of static magnetic moments. This finding places severe restrictions on the form of ferromagnetism that may exist in the overdoped regime. Although an extrinsic impurity cannot be absolutely ruled out as the source of the magnetism that does occur, the results presented here lend support to electronic band calculations that predict the occurrence of weak localized ferromagnetism at high doping.


Asunto(s)
Cobre/química , Conductividad Eléctrica , Magnetismo , Cristalización , Análisis Espectral/métodos
3.
Phys Rev Lett ; 108(17): 177204, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22680903

RESUMEN

We report on muon spin rotation studies of the noncentrosymmetric heavy fermion antiferromagnet CeRhSi3. A drastic and monotonic suppression of the internal fields, at the lowest measured temperature, was observed upon an increase of external pressure. Our data suggest that the ordered moments are gradually quenched with increasing pressure, in a manner different from the pressure dependence of the Néel temperature. At 23.6 kbar, the ordered magnetic moments are fully suppressed via a second-order phase transition, and T(N) is zero. Thus, we directly observed the quantum critical point at 23.6 kbar hidden inside the superconducting phase of CeRhSi3.

5.
J Phys Condens Matter ; 23(9): 094220, 2011 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-21339573

RESUMEN

Muon spin rotation and relaxation measurements have been carried out on the unconventional antiferromagnet Yb3Pt4. Oscillations are observed below T(N) = 2.22(1) K, consistent with the antiferromagnetic (AFM) Néel temperature observed in bulk experiments. In agreement with neutron diffraction experiments the oscillation frequency ω(µ)(T)/2π follows an S = 1/2 mean-field temperature dependence, yielding a quasistatic local field of 1.71(2) kOe at T = 0. A crude estimate gives an ordered moment of ∼ 0.66 µ(B) at T = 0, comparable to 0.81 µ(B) from neutron diffraction. As T-->T(N) from above the dynamic relaxation rate λ(d) exhibits no critical slowing down, consistent with a mean-field transition. In the AFM phase a T-linear fit to λ(d)(T), appropriate to a Fermi liquid, yields highly enhanced values of λ(d)/T and the Korringa constant K(µ)(2)T/λ(d), with K(µ) the estimated muon Knight shift. A strong suppression of λ(d) by applied field is observed in the AFM phase. These properties are consistent with the observed large Sommerfeld-Wilson and Kadowaki-Woods ratios in Yb3Pt4 (although the data do not discriminate between Fermi-liquid and non-Fermi-liquid states), and suggest strong enhancement of q≈0 spin correlations between large-Fermi-volume band quasiparticles in the AFM phase of Yb3Pt4.

6.
Phys Rev Lett ; 101(22): 227004, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19113515

RESUMEN

We calculate the screening charge density distribution due to a point charge, such as that of a positive muon (mu+), placed between the planes of a highly anisotropic layered metal. In underdoped hole cuprates the screening charge converts the charge density in the metallic-plane unit cells in the vicinity of the mu+ to nearly its value in the insulating state. The current-loop-ordered state observed by polarized neutron diffraction then vanishes in such cells, and also in nearby cells over a distance of order the intrinsic correlation length of the loop-ordered state. This strongly suppresses the magnetic field at the mu+ site. We estimate this suppressed field in underdoped YBa2Cu3O6+x and La2-xSrxCuO4, and find consistency with the observed approximately 0.2 G field in the former case and the observed upper bound of approximately 0.2 G in the latter case. This resolves the controversy between the neutron diffraction and mu-spin relaxation experiments.

7.
Phys Rev Lett ; 85(15): 3285-8, 2000 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-11019322

RESUMEN

We report new zero-field muon spin relaxation and neutron spin echo measurements in ferromagnetic (FM) (La,Ca)MnO3 which suggest at least two spatially separated regions possessing very different Mn-ion spin dynamics. One region displays diffusive relaxation, "critical slowing down" near T(C) and an increasing volume fraction below T(C), suggesting overdamped FM spin waves below T(C). The second region possesses more slowly fluctuating spins, a linewidth independent of q, and a decreasing volume fraction below T(C). The estimated length scale for the inhomogeneity is

8.
Phys Rev Lett ; 87(6): 066402, 2001 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-11497836

RESUMEN

Local f-electron spin dynamics in the non-Fermi-liquid heavy-fermion alloys UCu5-xPdx, x = 1.0 and 1.5, have been studied using muon spin-lattice relaxation. The sample-averaged asymmetry function G(t) indicates strongly inhomogeneous spin fluctuations and exhibits the scaling G(t,H) = G(t/H(gamma)) expected from glassy dynamics. At 0.05 K gamma(x = 1.0) = 0.35+/-0.1, but gamma(x = 1.5) = 0.7+/-0.1. This is in contrast to inelastic neutron scattering results, which yield gamma = 0.33 for both concentrations. There is no sign of static magnetism approximately greater than 10(-3)(B)/U ion in either material above 0.05 K. Our results strongly suggest that both alloys are quantum spin glasses.

9.
Phys Rev Lett ; 87(19): 196402, 2001 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-11690437

RESUMEN

Below T(N) approximately 17 K the 29Si NMR line in URu2Si2 exhibits a previously unobserved field-independent nearly isotropic contribution to the linewidth, which increases to approximately 12 G as T-->0. We argue that this feature does not arise from static freezing of the U-spin magnetization, but is due to coupling between 29Si spins and a hidden order parameter. We discuss time-reversal symmetry-breaking orbital antiferromagnetism and indirect nuclear spin-spin interactions as possible coupling mechanisms. Further NMR experiments and theoretical calculations are suggested.

10.
Phys Rev Lett ; 89(15): 157001, 2002 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-12366013

RESUMEN

Transverse-field muon-spin rotation measurements in the vortex-lattice of the heavy-fermion (HF) superconductor PrOs4Sb12 yield a temperature dependence of the magnetic penetration depth lambda indicative of an isotropic or nearly isotropic energy gap. This is not seen to date in any other HF superconductor and is a signature of isotropic pairing symmetry, possibly related to a novel nonmagnetic "quadrupolar Kondo" HF mechanism in PrOs4Sb12. The T=0 relaxation rate sigma(s)(0)=0.91(1) micros(-1) yields an estimated magnetic penetration depth lambda(0)=3440(20) A, which is considerably shorter than in other HF superconductors.

11.
Phys Rev Lett ; 90(15): 157201, 2003 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-12732065

RESUMEN

Muon spin rotation/relaxation measurements have been performed in the itinerant helical magnet MnSi at ambient pressure and at 8.3 kbar. We have found the following: (a) the spin-lattice relaxation rate 1/T(1) shows divergence as T1T proportional, variant (T-T(c))(beta) with the power beta larger than 1 near T(c); (b) 1/T(1) is strongly reduced in an applied external field B(L) and the divergent behavior near T(c) is completely suppressed at B(L)> or =4000 G. We discuss that (a) is consistent with the self-consistent renormalization theory and reflects a departure from "mean-field" behavior, while (b) indicates selective suppression of spin fluctuations of the q=0 component by B(L).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA