Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(14): 147001, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31050469

RESUMEN

The newly discovered noncentrosymmetric superconductor ThCoC_{2} exhibits numerous types of unconventional behavior in the field dependent heat capacity data. Here we present the first measurement of the gap symmetry of ThCoC_{2} by muon spin rotation and relaxation (µSR) measurements. The temperature dependence of the magnetic penetration depth measured using the transverse field µSR experiment reveals the evidence of a nodal pairing symmetry. To understand this finding, we carry out calculations of the superconducting pairing eigenvalue and eigenfunction (pairing symmetry) due to the spin-fluctuation mechanism by directly implementing the ab initio band structures. We find that the system possesses a single Fermi surface with considerable three dimensionality and a strong nesting along the k_{z} direction. Such nesting promotes a superconducting state with a cosk_{z}-like pairing symmetry with a prominent nodal line on the k_{z}=±π/2 plane. The result agrees well with the experimental data.

2.
J Phys Condens Matter ; 34(3)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34592722

RESUMEN

In the present work, we demonstrate that C-doped Zr5Pt3is an electron-phonon superconductor (with critical temperatureTC= 3.8 K) with a nonsymmorphic topological Dirac nodal-line semimetal state, which we report here for the first time. The superconducting properties of Zr5Pt3C0.5have been investigated by means of magnetization, resistivity, specific heat, and muon spin rotation and relaxation (µSR) measurements. We find that at low temperatures, the depolarization rate is almost constant and it can be well described by a single-bands-wave model with a superconducting gap of 2Δ(0)/kBTC= 3.84, somewhat higher than the value of BCS theory. From the transverse field µSR analysis, we estimate the London penetration depthλL= 469 nm, superconducting carrier densityns= 1.83 × 1026 m-3, and effective massm* = 1.428me. The zero field µSR confirms the absence of any spontaneous magnetic field in the superconducting ground state. In order to gain additional insights into the electronic ground state of C-doped Zr5Pt3, we also performed first-principles calculations within the framework of density functional theory (DFT). The observed homogenous electronic character of the Fermi surface as well as the mutual decrease ofTCand density of states at the Fermi level are consistent with the experimental findings of this study. However, the band structure reveals the presence of robust, gapless fourfold-degenerate nodal lines protected by 63screw rotations and glide mirror planes. Therefore, Zr5Pt3represents a novel, unprecedented condensed matter system to investigate the intricate interplay between superconductivity and topology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA