Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 25(7): e14377, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695845

RESUMEN

PURPOSE: A computational method based on Monte-Carlo calculations is presented and used to calculate isodose curves for a new upright and tilting CT scanner useful for radiation protection purposes. METHODS: The TOPAS code platform with imported CAD files for key components was used to construct a calculation space for the scanner. A sphere of water acts as the patient would by creating scatter out of the bore. Maximum intensity dose maps are calculated for various possible tilt angles to make sure radiation protection for site planning uses the maximum possible dose everywhere. RESULTS: The resulting maximum intensity isodose lines are more rounded than ones for just a single tilt angle and so closer to isotropic. These maximum intensity curves are closer to the isotropic assumption used in CTDI or DLP based methods of site planning and radiation protection. The isodose lines are similar to those of a standard CT scanner, just tilted upwards. There is more metal above the beam that lessens the dose above versus below isocenter. CONCLUSION: Aside from the orientation, this upright scanner is very similar to a typical CT scanner, and nothing different for shielding needs to be done for this new upright tilting CT scanner, because an isotropic scatter source is often assumed for any CT scanner.


Asunto(s)
Método de Montecarlo , Tomógrafos Computarizados por Rayos X , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/instrumentación , Protección Radiológica/instrumentación , Protección Radiológica/métodos , Fantasmas de Imagen , Dosis de Radiación , Algoritmos , Planificación de la Radioterapia Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos
2.
J Appl Clin Med Phys ; 24(8): e14079, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37345588

RESUMEN

The use of multi-modality imaging technologies such as CT, MRI, and PET imaging is state of the art for radiation therapy treatment planning. Except for a limited number of low magnetic field MR scanners the majority of such imaging technologies can only image the patient in a recumbent position. Delivering radiation therapy treatments with the patient in an upright orientation has many benefits and several companies are now developing upright patient positioners combined with upright diagnostic helical CT scanners to facilitate upright radiation therapy treatments. Due to the directional changes in the gravitational forces on the patient's body, most structures and organs will change position and shape between the recumbent and upright positions. Detailed knowledge about such structures and organs are therefore often only available in the recumbent position. The problem statement is therefore well defined, that is, how do we know where such structures and organs, that is, the target or region at risk volumes, are in the upright position if those cannot be identified and or delineated accurately enough using the upright diagnostic quality CT images only? This paper outlines two methods based on synthetic CT or MR images to overcome this problem.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Humanos , Imagen por Resonancia Magnética/métodos
3.
J Appl Clin Med Phys ; 24(11): e14099, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37488974

RESUMEN

Treating and imaging patients in the upright orientation is gaining acceptance in radiation oncology and radiology and has distinct advantages over the recumbent position. An IRB approved study to investigate the positions and orientations of the male pelvic organs between the supine and upright positions was conducted. The study comprised of scanning 15 male volunteers (aged 55-75 years) on a 0.6 T Fonar MRI scanner in the supine and upright positions with a full bladder and in the upright position with an empty bladder. The Pelvic study revealed that in the upright position the 1. Position and shape of the prostate are not impacted significantly by bladder fill. 2. Distance between the sacrum and the anterior bladder wall is significantly smaller. 3. Anterior-Posterior length and the bladder width is significantly larger. 4. Seminal vesicles are pushed down by the bladder. 5. Top of the penile bulb is further away from the apex of the prostate. These observed differences could positively impact upright prostate treatments by 1. Reducing the risk of small bowel approximating the treatment volume. 2. Prostate treatments can be done with a reduced focus on bladder fill. 3. Radiation beams for treating intermediate risk prostrate can be made smaller or a larger portion of the seminal vesicles can be treated with the same beam size than typically used for supine treatments. 4. Reducing the average dose to the penile bulb.


Asunto(s)
Pelvis , Próstata , Humanos , Masculino , Próstata/diagnóstico por imagen , Posición Supina , Estudios de Factibilidad , Pelvis/diagnóstico por imagen , Vejiga Urinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA