RESUMEN
Dendritic cells (DCs) are a complex network of specialised antigen-presenting cells that are critical initiators of adaptive immunity. Targeting antigen directly to DCs in situ is a vaccination strategy that selectively delivers antigen to receptors expressed by DC subtypes. This approach exploits specific DC subset functions of antigen uptake and presentation. Here, we review DC-targeted vaccination strategies that are designed to elicit effective cross-presentation for CD8+ T cell immunity. In particular, we focus on approaches that exploit receptors highly expressed by mouse and human cDCs equipped with superior cross-presentation capacity. These receptors include DEC205, Clec9A and XCR1. Targeting DC receptors Clec12A, Clec4A4 and mannose receptor is also reviewed. Outcomes of DC-targeted vaccination in mouse models through to human clinical trials is discussed. This is a promising new vaccination approach capable of directly targeting the cross-presentation pathway for prevention and treatment of tumours and infectious diseases.
Asunto(s)
Presentación de Antígeno , Reactividad Cruzada , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Antígenos , Vacunación , Células DendríticasRESUMEN
The development of dendritic cells (DCs) depends on signaling via the FMS-like tyrosine kinase 3 (Flt3) receptor. How Flt3 signaling impacts terminally differentiated DC function is unknown. This is important given the increasing interest in exploiting Flt3 for vaccination and tumor immunotherapy. Here, we examined DCs in mice harboring constitutively activated Flt3 (Flt3-ITD). Flt3ITD/ITD mice possessed expanded splenic DC subsets including plasmacytoid DC, conventional DC (cDC)1, cDC2, double positive (DP) cDC1 (CD11c+ CD8+ CD11b- CD103+ CD86+), noncanonical (NC) cDC1 (CD11c+ CD8+ CD11b- CD103- CD86-) and single positive (SP) cDC1 (CD11c+ CD8+ CD11b- CD103- CD86+). Outcomes of constitutive Flt3 signaling differed depending on the cDC subset examined. In comparison with wild type (WT) DCs, all Flt3ITD/ITD cDCs displayed an altered surface phenotype with changes in costimulatory molecules, major histocompatibility complex class I (MHC I) and II (MHC II). Cytokine secretion patterns, antigen uptake, antigen proteolysis and antigen presenting function differed between WT and Flt3ITD/ITD subsets, particularly cDC2. In summary, Flt3 signaling impacts the function of terminally differentiated cDCs with important consequences for antigen presentation.
Asunto(s)
Presentación de Antígeno , Células Dendríticas , Transducción de Señal , Tirosina Quinasa 3 Similar a fms , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo , Ratones , Ratones Endogámicos C57BL , Citocinas/metabolismo , Diferenciación CelularRESUMEN
MHC class II (MHC II) Ag presentation by dendritic cells (DCs) is critical for CD4+ T cell immunity. Cell surface levels of MHC II loaded with peptide is controlled by ubiquitination. In this study, we have examined how MHC II ubiquitination impacts immunity using MHC IIKRKI/KI mice expressing mutant MHC II molecules that are unable to be ubiquitinated. Numbers of conventional DC (cDC) 1, cDC2 and plasmacytoid DCs were significantly reduced in MHC IIKRKI/KI spleen, with the remaining MHC IIKRKI/KI DCs expressing an altered surface phenotype. Whereas Ag uptake, endosomal pH, and cathepsin protease activity were unaltered, MHC IIKRKI/KI cDC1 produced increased inflammatory cytokines and possessed defects in Ag proteolysis. Immunization of MHC IIKRKI/KI mice identified impairments in MHC II and MHC class I presentation of soluble, cell-associated and/or DC-targeted OVA via mAb specific for DC surface receptor Clec9A (anti-Clec9A-OVA mAb). Reduced T cell responses and impaired CTL killing was observed in MHC IIKRKI/KI mice following immunization with cell-associated and anti-Clec9A-OVA. Immunization of MHC IIKRKI/KI mice failed to elicit follicular Th cell responses and generated barely detectable Ab to anti-Clec9A mAb-targeted Ag. In summary, MHC II ubiquitination in DCs impacts the homeostasis, phenotype, cytokine production, and Ag proteolysis by DCs with consequences for Ag presentation and T cell and Ab-mediated immunity.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Centro Germinal/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Animales , Presentación de Antígeno/genética , Células Cultivadas , Citotoxicidad Inmunológica , Antígenos de Histocompatibilidad Clase II/genética , Inmunidad Celular , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , UbiquitinaciónRESUMEN
To control infections phagocytes can directly kill invading microbes. Macrophage-expressed gene 1 (Mpeg1), a pore-forming protein sometimes known as perforin-2, is reported to be essential for bacterial killing following phagocytosis. Mice homozygous for the mutant allele Mpeg1tm1Pod succumb to bacterial infection and exhibit deficiencies in bacterial killing in vitro. Here we describe a new Mpeg mutant allele Mpeg1tm1.1Pib on the C57BL/6J background. Mice homozygous for the new allele are not abnormally susceptible to bacterial or viral infection, and irrespective of genetic background show no perturbation in bacterial killing in vitro. Potential reasons for these conflicting findings are discussed. In further work, we show that cytokine responses to inflammatory mediators, as well as antibody generation, are also normal in Mpeg1tm1.1Pib/tm1.1Pib mice. We also show that Mpeg1 is localized to a CD68-positive endolysosomal compartment, and that it exists predominantly as a processed, two-chain disulfide-linked molecule. It is abundant in conventional dendritic cells 1, and mice lacking Mpeg1 do not present the model antigen ovalbumin efficiently. We conclude that Mpeg1 is not essential for innate antibacterial protection or antiviral immunity, but may play a focused role early in the adaptive immune response.
Asunto(s)
Presentación de Antígeno , Proteínas Citotóxicas Formadoras de Poros , Animales , Infecciones Bacterianas/inmunología , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Proteínas Citotóxicas Formadoras de Poros/inmunología , Virosis/inmunologíaRESUMEN
MHC class II (MHC II) displays peptides at the cell surface, a process critical for CD4+ T cell development and priming. Ubiquitination is a mechanism that dictates surface MHC II with the attachment of a polyubiquitin chain to peptide-loaded MHC II, promoting its traffic away from the plasma membrane. In this study, we have examined how MHC II ubiquitination impacts the composition and function of both conventional CD4+ T cell and regulatory T cell (Treg) compartments. Responses were examined in two models of altered MHC II ubiquitination: MHCIIKRKI /KI mice that express a mutant MHC II unable to be ubiquitinated or mice that lack membrane-associated RING-CH 8 (MARCH8), the E3 ubiquitin ligase responsible for MHC II ubiquitination specifically in thymic epithelial cells. Conventional CD4+ T cell populations in thymus, blood, and spleen of MHCIIKRKI/KI and March8 -/- mice were largely unaltered. In MLRs, March8 -/-, but not MHCIIKRKI/KI, CD4+ T cells had reduced reactivity to both self- and allogeneic MHC II. Thymic Treg were significantly reduced in MHCIIKRKI/KI mice, but not March8 -/- mice, whereas splenic Treg were unaffected. Neither scenario provoked autoimmunity, with no evidence of immunohistopathology and normal levels of autoantibody. In summary, MHC II ubiquitination in specific APC types does not have a major impact on the conventional CD4+ T cell compartment but is important for Treg development.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Linfocitos T Reguladores/inmunología , Ubiquitinación/inmunología , Animales , Presentación de Antígeno/inmunología , Células Dendríticas/inmunología , Células Epiteliales/inmunología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Bazo/inmunología , Timo/inmunología , Ubiquitina/inmunología , Ubiquitina-Proteína Ligasas/inmunologíaRESUMEN
Dendritic cells (DC) are professional antigen presenting cells comprising a variety of subsets, as either resident or migrating cells, in lymphoid and non-lymphoid organs. In the steady state DC continually process and present antigens on MHCI and MHCII, processes that are highly upregulated upon activation. By expressing differential sets of pattern recognition receptors different DC subsets are able to respond to a range of pathogenic and danger stimuli, enabling functional specialisation of the DC. The knowledge of functional specialisation of DC subsets is key to efficient priming of T cells, to the design of effective vaccine adjuvants and to understanding the role of different DC in health and disease. This review outlines mouse and human steady state DC subsets and key attributes that define their distinct functions.
Asunto(s)
Diferenciación Celular/inmunología , Células Dendríticas/citología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Animales , Presentación de Antígeno/inmunología , Células Presentadoras de Antígenos/inmunología , Células Dendríticas/inmunología , HumanosRESUMEN
The NZB/W F1 (F1) mice develop severe disease that is similar to human systemic lupus erythematosus. By contrast, each parent strain, NZB or NZW, has limited autoimmunity, suggesting traits of both strains contribute to pathogenesis. Although many of the contributing genes have been identified, the contributing cellular abnormality associated with each parent strain remains unresolved. Given that plasmacytoid dendritic cells (pDCs) are key to the pathogenesis of lupus, we investigated the properties of pDCs from NZB and NZW mice. We found that NZB mouse had higher numbers of pDCs, with much of the increase being contributed by a more abundant CD8+ pDC subset. This was associated with prolonged survival and stronger proliferation of CD4+ T cells. By contrast, NZW pDCs had heightened capacity to produce interferon-α (IFNα) and IFNλ, and promoted stronger B-cell proliferation upon CpG stimulation. Thus, our data reveal the different functional and numerical characteristics of pDCs from NZW and NZB mouse.
Asunto(s)
Autoinmunidad , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Lupus Eritematoso Sistémico/inmunología , Activación de Linfocitos/inmunología , Animales , Linfocitos B/inmunología , Antígenos CD8/inmunología , Antígenos CD8/metabolismo , Supervivencia Celular/inmunología , Células Dendríticas/citología , Células Dendríticas/metabolismo , Células Dendríticas/patología , Factores de Transcripción Forkhead/metabolismo , Interferón-alfa/metabolismo , Interferones/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NZB , Ratones Noqueados , Ratones Transgénicos , Oligodesoxirribonucleótidos/farmacologíaRESUMEN
Ab-targeted vaccination involves targeting a receptor of choice expressed by dendritic cells (DCs) with Ag-coupled Abs. Currently, there is little consensus as to which criteria determine receptor selection to ensure superior Ag presentation and immunity. In this study, we investigated parameters of DC receptor internalization and determined how they impact Ag presentation outcomes. First, using mixed bone marrow chimeras, we established that Ag-targeted, but not nontargeted, DCs are responsible for Ag presentation in settings of Ab-targeted vaccination in vivo. Next, we analyzed parameters of DEC205 (CD205), Clec9A, CD11c, CD11b, and CD40 endocytosis and obtained quantitative measurements of internalization speed, surface turnover, and delivered Ag load. Exploiting these parameters in MHC class I (MHC I) and MHC class II (MHC II) Ag presentation assays, we showed that receptor expression level, proportion of surface turnover, or speed of receptor internalization did not impact MHC I or MHC II Ag presentation efficiency. Furthermore, the Ag load delivered to DCs did not correlate with the efficiency of MHC I or MHC II Ag presentation. In contrast, targeting Ag to CD8(+) or CD8(-) DCs enhanced MHC I or MHC II Ag presentation, respectively. Therefore, receptor expression levels, speed of internalization, and/or the amount of Ag delivered can be excluded as major determinants that dictate Ag presentation efficiency in setting of Ab-targeted vaccination.
Asunto(s)
Anticuerpos/inmunología , Antígenos CD/inmunología , Células Dendríticas/inmunología , Endocitosis/inmunología , Vacunas/inmunología , Animales , Presentación de Antígeno/inmunología , Antígenos CD/metabolismo , Antígeno CD11b/inmunología , Antígeno CD11c/inmunología , Antígenos CD40/inmunología , Células Cultivadas , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Lectinas Tipo C/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Antígenos de Histocompatibilidad Menor , Receptores de Superficie Celular/inmunología , Receptores Inmunológicos/inmunología , Vacunación/métodos , Vacunas/administración & dosificaciónAsunto(s)
Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Animales , Humanos , Ratones , Linfocitos T/inmunología , Microambiente TumoralRESUMEN
The Epstein-Barr Virus (EBV) protein EB2 (also called Mta, SM and BMLF1), is an essential nuclear protein produced during the replicative cycle of EBV. EB2 is required for the efficient cytoplasmic accumulation of viral mRNAs derived from intronless genes. EB2 is an RNA-binding protein whose expression has been shown to influence RNA stability, splicing, nuclear export and translation. Using a yeast two-hybrid screen, we have identified three SR proteins, SF2/ASF, 9G8 and SRp20, as cellular partners of EB2. Then, by using siRNA to deplete cells of specific SR proteins, we found that SRp20 plays an essential role in the processing of several model mRNAs: the Renilla luciferase reporter mRNA, the human ß-globin cDNA transcript and two EBV late mRNAs. These four mRNAs were previously found to be highly dependent on EB2 for their efficient cytoplasmic accumulation. Here, we show that SRp20 depletion results in an increase in the accumulation of these mRNAs, which correlates with an absence of additive effect of EB2, suggesting that EB2 functions by antagonizing SRp20. Moreover, by using RNA-immunoprecipitation assays we found that EB2 enhances the association of SRp20 with the ß-globin transcript suggesting that EB2 acts by stabilizing SRp20's labile interactions with the RNA.
Asunto(s)
Fosfoproteínas/metabolismo , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Transactivadores/metabolismo , Núcleo Celular/virología , Citoplasma/metabolismo , Citoplasma/virología , Regulación hacia Abajo , Células HEK293 , Células HeLa , Humanos , Luciferasas de Renilla/genética , Mutación , Proteínas Nucleares/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/antagonistas & inhibidores , Factores de Empalme Serina-Arginina , Transactivadores/química , Transactivadores/genética , Técnicas del Sistema de Dos Híbridos , Globinas beta/genéticaRESUMEN
Dendritic cell (DC)-targeted vaccination is a new mode of antigen delivery that relies on the use of monoclonal antibodies (mAb) to target antigen to specific DC subsets. The neonatal Fc receptor (FcRn) is a non-classical Fc receptor that binds to immunoglobulin G (IgG) in acidified endosomes and controls its intracellular transport and recycling. FcRn is known to participate in the antigen presentation of immune complexes, however its contribution to DC-targeted vaccination has not previously been examined. Here we have investigated the role of FcRn in antigen presentation using antigen conjugated to IgG mAb which target specific DC receptors, including DEC205 and Clec9A expressed by the conventional DC 1 (cDC1) subset. We show that FcRn is expressed at high levels by cDC1, both at steady-state and following activation and plays a significant role in MHC I cross-presentation and MHC II presentation of antigens that are targeted to cDC1 via mAb specific for DEC205. This effect of FcRn is intrinsic to cDC1 and FcRn impacts the efficacy of anti-DEC205-mediated vaccination against B cell lymphoma. In contrast, FcRn does not impact presentation of antigens targeted to Clec9A and does not regulate presentation of cell-associated antigen. These data highlight a new and unique role of FcRn in controlling the immunogenicity of anti-DEC205-based vaccination, with consequences for exploiting this pathway to improve DC-targeted vaccine outcomes.
RESUMEN
After a long period where the potential of therapeutic peptides was let into oblivion and even dismissed, there is a revival of interest in peptides as potential drug candidates. Novel strategies for limiting metabolism and improve their bioavailability, and alternative routes of administration have emerged. This resulted in a large number of peptide-based drugs that are now being marketed in different indications. Regarding autoimmunity, successful data have been reported in numerous mouse models of autoimmune inflammation, yet relatively few clinical trials based on synthetic peptides are currently underway. This review reports on peptides that show much promises in appropriate mouse models of autoimmunity and describes in more detail clinical trials based on peptides for treating autoimmune patients. A particular emphasis is given to the 21-mer peptide P140/Lupuzor that has completed successfully phase I, phase IIa and phase IIb clinical trials for systemic lupus erythematosus.
Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Factores Inmunológicos/farmacocinética , Lupus Eritematoso Sistémico/tratamiento farmacológico , Fragmentos de Péptidos/farmacocinética , Secuencia de Aminoácidos , Animales , Enfermedades Autoinmunes/inmunología , Autoinmunidad/efectos de los fármacos , Disponibilidad Biológica , Ensayos Clínicos como Asunto , Vías de Administración de Medicamentos , Esquema de Medicación , Humanos , Factores Inmunológicos/administración & dosificación , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/mortalidad , Ratones , Datos de Secuencia Molecular , Fragmentos de Péptidos/administración & dosificación , Tasa de SupervivenciaRESUMEN
Stimulator of Interferon Genes (STING) is a cytosolic sensor of cyclic dinucleotides (CDNs). The activation of dendritic cells (DC) via the STING pathway, and their subsequent production of type I interferon (IFN) is considered central to eradicating tumours in mouse models. However, this contribution of STING in preclinical murine studies has not translated into positive outcomes of STING agonists in phase I & II clinical trials. We therefore questioned whether a difference in human DC responses could be critical to the lack of STING agonist efficacy in human settings. This study sought to directly compare mouse and human plasmacytoid DCs and conventional DC subset responses upon STING activation. We found all mouse and human DC subsets were potently activated by STING stimulation. As expected, Type I IFNs were produced by both mouse and human plasmacytoid DCs. However, mouse and human plasmacytoid and conventional DCs all produced type III IFNs (i.e., IFN-λs) in response to STING activation. Of particular interest, all human DCs produced large amounts of IFN-λ1, not expressed in the mouse genome. Furthermore, we also found differential cell death responses upon STING activation, observing rapid ablation of mouse, but not human, plasmacytoid DCs. STING-induced cell death in murine plasmacytoid DCs occurred in a cell-intrinsic manner and involved intrinsic apoptosis. These data highlight discordance between STING IFN and cell death responses in mouse and human DCs and caution against extrapolating STING-mediated events in mouse models to equivalent human outcomes.
Asunto(s)
Interferón Tipo I , Animales , Muerte Celular , Citosol/metabolismo , Células Dendríticas/metabolismo , Humanos , Interferón Tipo I/metabolismo , Proteínas de la Membrana , Ratones , Transducción de SeñalRESUMEN
Although immunotherapy has revolutionized cancer treatment, many immunogenic tumors remain refractory to treatment. This can be largely attributed to an immunologically "cold" tumor microenvironment characterized by an accumulation of immunosuppressive myeloid cells and exclusion of activated T cells. Here, we demonstrate that genetic ablation or therapeutic inhibition of the myeloid-specific hematopoietic cell kinase (HCK) enables activity of antagonistic anti-programmed cell death protein 1 (anti-PD1), anti-CTLA4, or agonistic anti-CD40 immunotherapies in otherwise refractory tumors and augments response in treatment-susceptible tumors. Mechanistically, HCK ablation reprograms tumor-associated macrophages and dendritic cells toward an inflammatory endotype and enhances CD8+ T cell recruitment and activation when combined with immunotherapy in mice. Meanwhile, therapeutic inhibition of HCK in humanized mice engrafted with patient-derived xenografts counteracts tumor immunosuppression, improves T cell recruitment, and impairs tumor growth. Collectively, our results suggest that therapeutic targeting of HCK activity enhances response to immunotherapy by simultaneously stimulating immune cell activation and inhibiting the immunosuppressive tumor microenvironment.
RESUMEN
The MARCH E3 ubiquitin (Ub) ligase MARCH1 regulates trafficking of major histocompatibility complex class II (MHC II) and CD86, molecules of critical importance to immunity. Here we show, using a genome-wide CRISPR knockout screen, that ubiquitin-like protein 3 (UBL3) is a necessary component of ubiquitination-mediated trafficking of these molecules in mice and in humans. Ubl3-deficient mice have elevated MHC II and CD86 expression on the surface of professional and atypical antigen presenting cells. UBL3 also regulates MHC II and CD86 in human dendritic cells (DCs) and macrophages. UBL3 impacts ubiquitination of MARCH1 substrates, a mechanism that requires UBL3 plasma membrane anchoring via prenylation. Loss of UBL3 alters adaptive immunity with impaired development of thymic regulatory T cells, loss of conventional type 1 DCs, increased number of trogocytic marginal zone B cells, and defective in vivo MHC II and MHC I antigen presentation. In summary, we identify UBL3 as a conserved, critical factor in MARCH1-mediated ubiquitination with important roles in immune responses.
Asunto(s)
Antígenos de Histocompatibilidad Clase II , Ubiquitinas , Animales , Antígeno B7-2/metabolismo , Células Dendríticas , Antígenos de Histocompatibilidad Clase II/metabolismo , Complejo Mayor de Histocompatibilidad , Ratones , Ratones Endogámicos C57BL , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismoRESUMEN
Dendritic cells (DCs) express receptors to sense pathogens and/or tissue damage and to communicate with other immune cells. Among those receptors, Fc receptors (FcRs) are triggered by the Fc region of antibodies produced during adaptive immunity. In this review, the role of FcγR and neonatal Fc receptor (FcRn) in DC immunity will be discussed. Their expression in DC subsets and impact on antigen uptake and presentation, DC maturation and polarisation of T cell responses will be described. Lastly, we will discuss the importance of FcR-mediated DC function in the context of immunity during viral infection, inflammatory disease, cancer and immunotherapy.
Asunto(s)
Presentación de Antígeno/inmunología , Células Dendríticas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Receptores Fc/inmunología , Receptores de IgG/inmunología , Animales , Humanos , Activación de Linfocitos/inmunologíaRESUMEN
MARCH1 and MARCH8 are ubiquitin ligases that control the expression and trafficking of critical immunoreceptors. Understanding of their function is hampered by three major knowledge gaps: (i) it is unclear which cell types utilize these ligases; (ii) their level of redundancy is unknown; and (iii) most of their putative substrates have been described in cell lines, often overexpressing MARCH1 or MARCH8, and it is unclear which substrates are regulated by either ligase in vivo. Here we address these questions by systematically analyzing the immune cell repertoire of MARCH1- or MARCH8-deficient mice, and applying unbiased proteomic profiling of the plasma membrane of primary cells to identify MARCH1 and MARCH8 substrates. Only CD86 and MHC II were unequivocally identified as immunoreceptors regulated by MARCH1 and MARCH8, but each ligase carried out its function in different tissues. MARCH1 regulated MHC II and CD86 in professional and "atypical" antigen presenting cells of hematopoietic origin, including neutrophils, eosinophils and monocytes. MARCH8 only operated in non-hematopoietic cells, such as thymic and alveolar epithelial cells. Our results establish the tissue-specific functions of MARCH1 and MARCH8 in regulation of immune receptor expression and reveal that the range of cells constitutively endowed with antigen-presentation capacity is wider than generally appreciated.
RESUMEN
Since the 1997 discovery that the first identified human homolog of Drosophila Toll could activate the innate immune system, the innate arm of immunity has rapidly taken on a new light as an important player in the recognition of pathogens and damaged self. The recognition of danger by dendritic cells (DC) is a crucial step in activating the adaptive immune system. Different DC express varied subsets of pattern recognition receptors (PRR), enabling both overlap and exclusivity in the recognition of danger signals by DC. PRR-mediated DC maturation and activation can be measured by changes in the surface expression of costimulatory as well as coinhibitory molecules, changes in size and shape of the DC and by their production of different cytokines.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Dendríticas/citología , Animales , Membrana Celular/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Ratones Endogámicos C57BL , Coloración y EtiquetadoRESUMEN
Inducing effective anti-tumor immunity has become a major therapeutic strategy against cancer. Dendritic cells (DC) are a heterogenous population of antigen presenting cells that infiltrate tumors. While DC play a critical role in the priming and maintenance of local immunity, their functions are often diminished, or suppressed, by factors encountered in the tumor microenvironment. Furthermore, DC populations with immunosuppressive activities are also recruited to tumors, limiting T cell infiltration and promoting tumor growth. Anti-cancer therapies can impact the function of tumor-associated DC and/or alter their phenotype. Therefore, the design of effective anti-cancer therapies for clinical translation should consider how best to boost tumor-associated DC function to drive anti-tumor immunity. In this review, we discuss the different subsets of tumor-infiltrating DC and their role in anti-tumor immunity. Moreover, we describe strategies to enhance DC function within tumors and harness these cells for effective tumor immunotherapy.
RESUMEN
Targeting antigen (Ag) to dendritic cell (DC) surface receptors is a potential new mode of vaccination. C-type lectin-like receptors Clec9A and Clec12A are attractive receptor targets however their targeting in vivo elicits significantly different outcomes for unknown reasons. To gain insight into the mechanisms responsible, we have examined the intrinsic capacity of Clec9A and Clec12A to elicit MHC I and MHC II Ag presentation following ex vivo targeting with primary murine DC. Both receptors exhibited high rates of internalization by CD8+ DCs, while Clec12A delivered a significantly higher Ag owing to its higher expression level. Targeting Ag to immature CD8+ DCs via both Clec9A and Clec12A failed to elicit MHC I cross-presentation above that of controls, while Clec12A was the superior receptor to target following CD8+ DC maturation. CD8- DCs were unable to elicit MHC I cross-presentation regardless of the receptor targeted. For MHC II presentation, targeting Ag to Clec12A enabled significant responses by both immature CD8+ and CD8- DCs, whereas Clec9A did not elicit significant MHC II Ag presentation by either DC subset, resting or mature. Therefore, Clec9A and Clec12A exhibit different intrinsic capacities to elicit MHC I and MHC II presentation following direct Ag targeting, though they can only elicit MHC I responses if the DC expressing the receptor is equipped with the capacity to cross-present. Our conclusions have consequences for the exploitation of these receptors for vaccination purposes, in addition to providing insight into their roles as Ag targets in vivo.