Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Neurobiol ; 60(9): 4952-4965, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37209264

RESUMEN

Temporal lobe epilepsy (TLE), accompanied by hippocampal sclerosis (HS), is the most common form of drug-resistant epilepsy (DRE). Nearly 20% of the patients showed seizure recurrence even after surgery, and the reasons are yet to be understood. Dysregulation of neurotransmitters is evident during seizures, which can induce excitotoxicity. The present study focused on understanding the molecular changes associated with Dopamine (DA) and glutamate signaling and their possible impact on the persistence of excitotoxicity and seizure recurrence in patients with drug-resistant TLE-HS who underwent surgery. According to the International League against Epilepsy (ILAE) suggested classification for seizure outcomes, the patients (n = 26) were classified as class 1 (no seizures) and class 2 (persistent seizures) using the latest post-surgery follow-up data to understand the prevalent molecular changes in seizure-free and seizure-recurrence patient groups. Our study uses thioflavin T assay, western blot analysis, immunofluorescence assays, and fluorescence resonance energy transfer (FRET) assays. We have observed a substantial increase in the DA and glutamate receptors that promote excitotoxicity. Patients who had seizure recurrence showed a significant increase in (pNR2B, p < 0.009; and pGluR1, p < 0.01), protein phosphatase1γ (PP1γ; p < 0.009), protein kinase A (PKAc; p < 0.001) and dopamine-cAMP regulated phospho protein32 (pDARPP32T34; p < 0.009) which are critical for long-term potentiation (LTP), excitotoxicity compared to seizure-free patients and controls. A significant increase in D1R downstream kinases like PKA (p < 0.001), pCAMKII (p < 0.009), and Fyn (p < 0.001) was observed in patient samples compared to controls. Anti-epileptic DA receptor D2R was found to be decreased in ILAE class 2 (p < 0.02) compared to class 1. Since upregulation of DA and glutamate signaling supports LTP and excitotoxicity, we believe it could impact seizure recurrence. Further studies about the impact of DA and glutamate signaling on the distribution of PP1γ at postsynaptic density and synaptic strength could help us understand the seizure microenvironment in patients. Dopamine, Glutamate signal crosstalk. Diagram representing the PP1γ regulation by NMDAR negative feedback inhibition signaling (green circle-left) and D1R signal (red circle-middle) domination over PP1γ though increased PKA, pDARPP32T34, and supports pGluR1, pNR2B in seizure recurrent patients. D1R-D2R hetero dimer activation (red circle-right) increases cellular Ca2+ and pCAMKIIα activation. All these events lead to calcium overload in HS patients and excitotoxicity, particularly in patients experiencing recurrent seizures.


Asunto(s)
Epilepsia Refractaria , Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Dopamina , Ácido Glutámico , Resultado del Tratamiento , Hipocampo
2.
Cell Stress Chaperones ; 27(6): 633-643, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36258150

RESUMEN

Epileptic seizures occur due to an imbalance between excitatory and inhibitory neurosignals. The excitotoxic insults promote the accumulation of reactive oxygen species (ROS), unfolded proteins (UFP) aggregation, and sometimes even cell death. The epileptic brain samples in our study showed significant changes in the quantity of UFP accumulation. This part explored the efficiency of ER stress and autophagy responses at neutralizing the UFP using resected epileptic brain tissue samples. Meanwhile, we regularly observed these patients' post-surgical clinical data to find the recurrence of seizures. According to International League against Epilepsy (ILAE) suggestions, we classified the patients (n = 26) as class 1 (completely seizure-free), class 2 (less frequent seizures or auras), and class 3 (auras with < 3 seizures per year). The classification helped us understand the reason for variations in the UFP accumulation in patient samples. We have observed the protein levels of ER chaperone, glucose-regulated protein 78 kDa (GRP78/BiP), inositol-requiring enzyme 1α (IRE1α), X box-binding protein 1 s (XBP1s), eukaryotic translation initiation factor 2α (peIF2α), C/EBP homologous protein (CHOP), NADPH oxidase (NOX2), and autophagy proteins like BECLIN1, ATG 7, 12, 5, 16, p62, and LC3. Our results suggested that ER stress response limitation may contribute to seizure recurrence in epilepsy patients, particularly in classes 2 and 3. In addition, we have observed significant upregulation of ER stress-dependent apoptosis initiation factor CHOP in these patients. These results indicate that understanding the ER stress response pattern infers the possibility of post-surgical outcomes in focal cortical dysplasia (FCD) patients.


Asunto(s)
Estrés del Retículo Endoplásmico , Malformaciones del Desarrollo Cortical , Humanos , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas , Apoptosis , Convulsiones , Factores de Iniciación de Péptidos/metabolismo , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA