RESUMEN
Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1-9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1-E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies.
Asunto(s)
Exones , Eliminación de Gen , Terapia Molecular Dirigida , Neoplasias , Oncogenes , Inhibidores de Proteínas Quinasas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Animales , Exones/genética , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Oncogenes/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismoRESUMEN
Epidermal growth factor receptor (EGFR) mutations typically occur in exons 18-21 and are established driver mutations in non-small cell lung cancer (NSCLC)1-3. Targeted therapies are approved for patients with 'classical' mutations and a small number of other mutations4-6. However, effective therapies have not been identified for additional EGFR mutations. Furthermore, the frequency and effects of atypical EGFR mutations on drug sensitivity are unknown1,3,7-10. Here we characterize the mutational landscape in 16,715 patients with EGFR-mutant NSCLC, and establish the structure-function relationship of EGFR mutations on drug sensitivity. We found that EGFR mutations can be separated into four distinct subgroups on the basis of sensitivity and structural changes that retrospectively predict patient outcomes following treatment with EGFR inhibitors better than traditional exon-based groups. Together, these data delineate a structure-based approach for defining functional groups of EGFR mutations that can effectively guide treatment and clinical trial choices for patients with EGFR-mutant NSCLC and suggest that a structure-function-based approach may improve the prediction of drug sensitivity to targeted therapies in oncogenes with diverse mutations.
Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Afatinib/uso terapéutico , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Resistencia a Antineoplásicos , Receptores ErbB/genética , Exones , Femenino , Humanos , Neoplasias Pulmonares/genética , Ratones , Simulación del Acoplamiento Molecular , Mutación , Relación Estructura-ActividadRESUMEN
BACKGROUND: Pancreatic cancer (PC) represents an aggressive disease with median overall survival (OS) of less than 1 year in the front-line setting. FOLFIRINOX and gemcitabine and paclitaxel (GP) are standard of care options for these patients; however, optimal selection of therapy is challenging. METHODS: Comprehensive genomic profiling was performed on 8358 PC patients. Outcomes were available for 1149 metastatic PC patients treated with 1L FOLFIRINOX or GP. A scar-based measure of HRD was called using a machine learning-based algorithm incorporating copy number and indel features. RESULTS: A scar-based HRD signature (HRDsig) was identified in 9% of patients. HRDsig significantly co-occurred with biallelic alterations in BRCA1/2, PALB2, BARD1, and RAD51C/D, but encompassed a larger population than that defined by BRCA1/BRCA2/PALB2 (9% vs. 6%). HRDsig was predictive of 1L FOLFIRNOX chemotherapy benefit with doubled OS relative to gemcitabine and paclitaxel (GP) (rwOS aHR 0.37 [0.22-0.62]), including 25% of the population with long-term (2 year+) survival in a real-world cohort of patients. Less benefit from FOLFIRINOX was observed in the HRDsig(-) population. Predictive value was seen in both the BRCA1/2/PALB2 mutant and wildtype populations, suggesting additional value to mutational profiling. CONCLUSION: A scar-based HRD biomarker was identified in a significant fraction of PC patients and is predictive of FOLFIRINOX benefit. Incorporating a biomarker like HRDsig could identify the right patients for platinum chemotherapy and potentially reduce FOLFIRINOX use by over 40%, minimizing toxicities with similar survival outcomes. Confirmatory studies should be performed.
Asunto(s)
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteína BRCA1/genética , Gemcitabina , Cicatriz/inducido químicamente , Cicatriz/tratamiento farmacológico , Cicatriz/patología , Estudios Retrospectivos , Proteína BRCA2/genética , Fluorouracilo , Leucovorina , Desoxicitidina , Paclitaxel , Albúminas , Neoplasias PancreáticasRESUMEN
Activation of the tyrosine kinase receptor IGF1R is targetable with existing tyrosine kinase inhibitors (TKIs) and monoclonal antibodies, but mutations in IGF1R have not been systematically characterized. Pan-cancer analysis of 326,911 tumors identified two distinct, activating non-frameshift insertion hotspots in IGF1R, which were significantly enriched in adenoid cystic carcinomas (ACCs). IGF1R alterations from 326,911 subjects were analyzed by variant effect prediction class, position within the gene, and cancer type. 6502 (2.0%) samples harbored one or more alterations in IGF1R. Two regions were enriched for non-frameshift insertions: codons 663-666 at the hinge region of the fibronectin type 3 domain and codons 1034-1049 in the tyrosine kinase domain. Hotspot insertions were highly enriched in ACCs (27.3-fold higher than in the remainder of the pan-cancer dataset; P = 2.3 × 10-17). Among salivary gland tumors, IGF1R hotspot insertions were entirely specific to ACCs. IGF1R alterations were most often mutually exclusive with other ACC drivers (9/15, 60%). Tumors with non-frameshift hotspot IGF1R insertions represent a novel, potentially targetable subtype of ACC. Additional studies are needed to determine whether these patients respond to existing IGF1R inhibitors.
Asunto(s)
Carcinoma Adenoide Quístico , Neoplasias de las Glándulas Salivales , Humanos , Carcinoma Adenoide Quístico/genética , Carcinoma Adenoide Quístico/patología , Fibronectinas , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/patología , Inhibidores de Proteínas Quinasas , Anticuerpos Monoclonales , Receptor IGF Tipo 1/genéticaRESUMEN
A majority of patients with metastatic colorectal cancer (mCRC) experience recurrence post curative-intent surgery. The addition of adjuvant chemotherapy has shown to provide limited survival benefits when applied to all patients. Therefore, a biomarker to assess molecular residual disease (MRD) accurately and guide treatment selection is highly desirable for high-risk patients. This feasibility study evaluated the prognostic value of a tissue comprehensive genomic profiling (CGP)-informed, personalized circulating tumor DNA (ctDNA) assay (FoundationOne®Tracker) (Foundation Medicine, Inc., Cambridge, MA, USA) by correlating MRD status with clinical outcomes. ctDNA analysis was performed retrospectively on plasma samples from 69 patients with resected mCRC obtained at the MRD and the follow-up time point. Tissue CGP identified potentially actionable alterations in 54% (37/69) of patients. MRD-positivity was significantly associated with lower disease-free survival (DFS) (HR: 4.97, 95% CI: 2.67−9.24, p < 0.0001) and overall survival (OS) (HR: 27.05, 95% CI: 3.60−203.46, p < 0.0001). Similarly, ctDNA positive status at the follow-up time point correlated with a marked reduction in DFS (HR: 8.78, 95% CI: 3.59−21.49, p < 0.0001) and OS (HR: 20.06, 95% CI: 2.51−160.25, p < 0.0001). The overall sensitivity and specificity at the follow-up time point were 69% and 100%, respectively. Our results indicate that MRD detection using the tissue CGP-informed ctDNA assay is prognostic of survival outcomes in patients with resected mCRC. The concurrent MRD detection and identification of actionable alterations has the potential to guide perioperative clinical decision-making.
Asunto(s)
ADN Tumoral Circulante , Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias del Recto , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía , Progresión de la Enfermedad , Genómica , Humanos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Neoplasia Residual/patología , Estudios RetrospectivosRESUMEN
Based on the approvals of crizotinib and entrectinib by the Food and Drug Administration for the treatment of ROS1 positive nonsmall cell lung cancer (NSCLC), we sought to examine the mutational profile of a variety of solid tumors (excluding sarcomas) with ROS1 fusions that underwent comprehensive genomic profiling. A review of our database was performed to extract all nonsarcoma patients with ROS1 fusions that were discovered by the hybrid capture-based DNA only sequencing assays. We examined the coalterations representing potentially targetable biomarkers, resistance alterations and other alterations in these cases. In addition, we examined the histologic characteristics and protein expression with immunohistochemistry (IHC). From a series of clinically advanced nonsarcoma solid tumors, 356 unique cases with ROS1 fusions included 275 (77.2%) NSCLC and 81 (22.8%) non-NSCLC. Ten novel ROS1 fusions were discovered. Importantly, the NSCLC ROS1 fusionpos tumors had a higher PD-L1 IHC expression positivity when compared to the NSCLC ROS1 fusionneg population (P = .012, Chi-squared). The frequency of known and likely anti-ROS1 targeted therapy resistance genomic alterations in NSCLC was 7.3% (20/275) and in non-NSCLC was 4.9% (4/81). Overall, the coalteration profile of ROS1 fusionpos NSCLC and non-NSCLC was similar with only three genes altered significantly more frequently in non-NSCLC vs NSCLC: TERT, PTEN, APC. In our study, we characterized a large cohort of ROS1 fusionpos NSCLC and non-NSCLC solid tumors and discovered 10 novel ROS1 fusions.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Pulmonares/genética , Fusión de Oncogenes/genética , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Anciano , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Bases de Datos Genéticas , Femenino , Genómica , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Estudios RetrospectivosRESUMEN
BACKGROUND: This study assessed the contrasting genomic profiles from the primary tumors (PTs), metastatic (MET) sites, and circulating tumor DNA (ctDNA) of patients with prostate cancer (PC). METHODS: A total of 1294 PC tissue specimens and 2462 ctDNA specimens underwent hybrid capture-based comprehensive genomic profiling (CGP). Specimens included tissue from PTs; MET biopsies from bone, liver (LIV), lung (LU), brain (BN), lymph node, and soft tissue sites; and ctDNA. RESULTS: Differences in alteration frequencies between PT, MET, and ctDNA specimens for selected genes were observed. TMPRSS2:ERG fusion frequencies were similar between PTs and MET sites (35% vs 33%) but varied among MET sites. Genomic alterations (GAs) in AR were lowest in PTs (2%) and highest in MET sites (from 24% in LU to 50% in LIV). BN had the highest genomic alterations/tumor (8) and enrichment for PTEN GAs. The BRCA2 GA frequency varied from 0% in BN to 15% in LIV. ERBB2 amplification was increased in MET sites in comparison with PTs. RB1 GAs were increased in LIV. Biomarkers potentially associated with an anti-PD(L)1 response included CDK12 GAs (16% in LU) and a microsatellite instability-high status (29% in BN). Analyses of ctDNA featured a broad spectrum of GAs similar to those detected across MET sites. CONCLUSIONS: CGP of PTs, MET sites, and ctDNA in PC exhibited differences most likely associated with tumor progression, clonal evolution, and exposure to systemic therapies; ctDNA can also capture a broad range of potential therapeutic opportunities for patients with PC.
Asunto(s)
ADN Tumoral Circulante , Neoplasias de la Próstata , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Biopsia Líquida , Masculino , Inestabilidad de Microsatélites , Mutación , Neoplasias de la Próstata/genéticaRESUMEN
BACKGROUND: RAS short variant (SV) mutations in colorectal cancer (CRC) are associated with lack of benefit from epidermal growth factor receptor (EGFR) monoclonal antibody (EGFRmAb). However, the clinical implications for RAS amplification (RASa) as a biomarker for anti-EGFR therapy in CRC remain ill defined. METHODS: Genomic analysis was performed using the Foundation Medicine (FM) comprehensive genomic profiling database of 37,233 CRC cases. Clinical outcomes were assessed using two independent cohorts: the City of Hope (COH) cohort of 338 patients with metastatic CRC (mCRC) and the Flatiron Health-FM real-world clinicogenomic database (CGDB) of 3,904 patients with mCRC. RESULTS: RASa was detected in 1.6% (614/37,233) of primarily mCRC. RASa 6-9 (n = 241, 39%), 10-19 (n = 165, 27%), and ≥ 20 (n = 209, 34%) copy number subsets had co-RAS SV/BRAF V600E in 63%/3%, 31%/0.6%, and 4.8%/0% of cases, respectively. In the COH cohort, six patients with RASa (13-54 copies) received EGFRmAb, four of six had progressive disease, two had stable disease, and median time to treatment discontinuation (TTD) was 2.5 months. Of the CGDB EGFRmAb-treated patients, those with RASa (n = 9) had median TTD of 4.7 months and overall survival (OS) of 11.4 months, those with RAS SV (n = 101) had median TTD and OS of 5.3 and 9.4 months, and those with RAS/BRAF wild-type (n = 608) had median TTD and OS of 7.6 and 13.7 months. CONCLUSION: Patients with RASa without RAS mutations (1.1% of mCRC) may have poor outcomes on EGFRmAb, although numbers herein were small, and interpretation is confounded by combination chemotherapy. Larger independent studies are warranted to determine if RASa, including degree of amplification, may act similarly to RAS mutation as a resistance mechanism to EGFRmAb therapies. IMPLICATIONS FOR PRACTICE: Genomic data suggest that RAS amplification occurs as the sole RAS/RAF alteration in >1% of colorectal cancer cases and that degree of amplification inversely correlates with co-occurring MAPK pathway alterations. Preliminary clinical evidence suggests that RAS amplification may function similarly to RAS mutation as a negative predictor of benefit from anti-epidermal growth factor receptor therapies in colorectal cancer. More clinical data are needed, and comprehensive genomic profiling, including detection of RAS amplification, should be used in trial design to inform therapy selection.
Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Anticuerpos Monoclonales , Cetuximab , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Receptores ErbB/genética , Humanos , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genéticaRESUMEN
Aim: To assess concordance between HER2 status measured by traditional methods and ERBB2 amplification measured by next-generation sequencing and its association with first-line trastuzumab clinical benefit in patients with advanced esophagogastric cancer. Methods: Retrospective analysis of HER2/ERBB2 concordance using a deidentified USA-based clinicogenomic database. Clinical outcomes were assessed for patients with HER2+ advanced esophagogastric cancer who received first-line trastuzumab. Results: Overall HER2/ERBB2 concordance was 87.5%. Among patients who received first-line trastuzumab, concordant HER2/ERBB2 was associated with longer time to treatment discontinuation (adjusted hazard ratio [aHR]: 0.63; 95% CI: 0.43-0.90) and overall survival (aHR: 0.51; 95% CI: 0.33-0.79). ERBB2 copy number ≥25 (median) was associated with longer time to treatment discontinuation (aHR: 0.56; 95% CI: 0.35-0.88) and overall survival (aHR: 0.52; 95% CI: 0.30-0.91). Conclusion: HER2/ERBB2 concordance and higher ERBB2 copy number predicted clinical benefit from trastuzumab.
Lay abstract Trastuzumab is a drug that has been shown to prolong survival in some patients with advanced esophagogastric cancer whose tumor expresses a protein biomarker called HER2. There are different methods for assessing whether a patient's tumor expresses HER2, including but not limited to traditional methods such as immunohistochemistry and in situ hybridization and novel methods such as next-generation sequencing, which detects alterations in the gene (ERBB2) that encodes the HER2 protein. In our study, we assessed concordance between HER2 status (HER2-positive or HER2-negative) measured by traditional methods and ERBB2 amplification measured by next-generation sequencing, to determine whether there was an association between concordance and clinical benefit in patients with advanced esophagogastric cancer treated with trastuzumab. Our results suggest that, when HER2 positivity is detected through traditional methods, both ERBB2 concordance (i.e., agreement that a patient's tumor had the biomarker) and a higher ERBB2 copy number (the amount of the ERBB2 gene expressed by the tumor) were associated with longer time to treatment discontinuation and overall survival in patients with advanced esophagogastric cancer treated with first-line trastuzumab.
Asunto(s)
Neoplasias Esofágicas/tratamiento farmacológico , Receptor ErbB-2/genética , Trastuzumab/uso terapéutico , Anciano , Neoplasias Esofágicas/mortalidad , Femenino , Amplificación de Genes , Dosificación de Gen , Humanos , Masculino , Persona de Mediana Edad , Receptor ErbB-2/análisis , Estudios RetrospectivosRESUMEN
PURPOSE: Amplifications of receptor tyrosine kinases (RTKS) are therapeutic targets in multiple tumor types (e.g. HER2 in breast cancer), and amplification of the chromosome 4 segment harboring the three RTKs KIT, PDGFRA, and KDR (4q12amp) may be similarly targetable. The presence of 4q12amp has been sporadically reported in small tumor specific series but a large-scale analysis is lacking. We assess the pan-cancer landscape of 4q12amp and provide early clinical support for the feasibility of targeting this amplicon. EXPERIMENTAL DESIGN: Tumor specimens from 132,872 patients with advanced cancer were assayed with hybrid capture based comprehensive genomic profiling which assays 186-315 genes for all classes of genomic alterations, including amplifications. Baseline demographic data were abstracted, and presence of 4q12amp was defined as 6 or more copies of KIT/KDR/PDGFRA. Concurrent alterations and treatment outcomes with matched therapies were explored in a subset of cases. RESULTS: Overall 0.65% of cases harbored 4q12amp at a median copy number of 10 (range 6-344). Among cancers with >100 cases in this series, glioblastomas, angiosarcomas, and osteosarcomas were enriched for 4q12amp at 4.7%, 4.8%, and 6.4%, respectively (all p < 0.001), giving an overall sarcoma (n = 6,885) incidence of 1.9%. Among 99 pulmonary adenocarcinoma cases harboring 4q12amp, 50 (50%) lacked any other known driver of NSLCC. Four index cases plus a previously reported case on treatment with empirical TKIs monotherapy had stable disease on average exceeding 20 months. CONCLUSION: We define 4q12amp as a significant event across the pan-cancer landscape, comparable to known pan-cancer targets such as NTRK and microsatellite instability, with notable enrichment in several cancers such as osteosarcoma where standard treatment is limited. The responses to available TKIs observed in index cases strongly suggest 4q12amp is a druggable oncogenic target across cancers that warrants a focused drug development strategy. IMPLICATIONS FOR PRACTICE: Coamplification of the receptor tyrosine kinases (rtks) KIT/KDR/PDGFRA (4q12amp) is present broadly across cancers (0.65%), with enrichment in osteosarcoma and gliomas. Evidence for this amplicon having an oncogenic role is the mutual exclusivity of 4q12amp to other known drivers in 50% of pulmonary adenocarcinoma cases. Furthermore, preliminary clinical evidence for driver status comes from four index cases of patients empirically treated with commercially available tyrosine kinase inhibitors with activity against KIT/KDR/PDGFRA who had stable disease for 20 months on average. The sum of these lines of evidence suggests further clinical and preclinical investigation of 4q12amp is warranted as the possible basis for a pan-cancer drug development strategy.
Asunto(s)
Amplificación de Genes/genética , Neoplasias/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Humanos , Persona de Mediana Edad , Adulto JovenRESUMEN
PURPOSE: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal soft tissue neoplasm often linked to mTOR pathway activation via TSC2 mutation. We analyzed a series of 31 consecutive metastatic PEComa (mPEComa) cases using a combined DNA/RNA hybrid capture-based comprehensive genomic profiling (CGP) assay to assess the genomic landscape of mPEComa. PATIENTS AND METHODS: Formalin-fixed, paraffin-embedded (FFPE) blocks or slides were obtained from tumors from 31 unique patients with mPEC-oma. DNA and RNA were extracted and CGP was performed on 405 genes using a targeted next-generation sequencing (NGS) assay in a CLIA-certified lab. RESULTS: All cases had locally advanced or metastatic disease, and 58% of patients were female with a median age of 50 years (range 8-76), and 17 and 14 specimens were from primary and metastatic sites, respectively. One hundred genomic alterations were identified in the cohort, with an average of 3.2 genomic alterations/case including alterations in TSC2 32.3% of cases (10), TSC1 9.6% (3), TFE3 16.1% (5, all fusions), and folliculin (FLCN) 6.4% (2), with all occurring in mutually exclusive fashion. Of TSC2 mutant cases, 70% had biallelic inactivation of this locus, as were 100% of TSC1 mutant cases. Two TSC1/2 wildtype cases harbored truncating mutations in FLCN, both of which were under LOH. Five TFE3 fusion cases were identified including the novel 5' fusion partner ZC3H4. CONCLUSIONS: We describe for the first time mPEComa cases with FLCN mutations under LOH, further characterizing dysregulation of the mTOR pathway as a unifying theme in mPEC-oma. Cumulatively, we demonstrate the feasibility and potential utility of segregating mPEComa by TSC, TFE3, and FLCN status via CGP in clinical care.
Asunto(s)
Genómica , Pérdida de Heterocigocidad/genética , Neoplasias de Células Epitelioides Perivasculares/genética , Adolescente , Adulto , Anciano , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Niño , ADN , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Neoplasias de Células Epitelioides Perivasculares/patología , Proteínas Proto-Oncogénicas , ARN/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Proteínas Supresoras de Tumor , Adulto JovenRESUMEN
OBJECTIVE: To review the genomic landscape of advanced urothelial carcinoma (UC) to assess the frequencies of EGFR and ERBB2 (HER2) alterations. MATERIALS AND METHODS: Tumour specimens from 3753 patients with advanced UC were assayed with hybrid capture-based comprehensive genomic profiling of 180-395 genes. Tumour mutational burden (TMB) was assessed on 0.8 or 1.1 Mb of DNA, and is reported as mutations per megabase. RESULTS: In 3753 cases of UC, EGFR alterations were detected in 4.1% (154) and were most commonly amplifications (64%; 99/154), while exon 20 insertions (EGFRexon20ins ) were the second most common alteration (18%; 27/154). Alterations in ERBB2 were observed in 15% (552/3753) of cases and, similarly, ERBB2 amplification was the most commonly observed alteration (278/552; 50%); ERBB2exon20ins occurred in 3.6% (20/552) of cases. EGFRexon20ins and ERBB2exon20ins occurred in younger patients (median age 62 vs 69 years, P = 2.6E-2 and 60 vs 68 years, P = 7.8E-4), and these cases had significantly lower TMB (median 3.6 vs 7.2, P = 2.7E-4 and 2.5 vs 10, P = 1.2E-7) and less frequent TP53 alterations (3.7% vs 83%, P = 4.3E-14 and 20% vs 68%, P = 9.8E-4) compared to cases with other EGFR or ERBB2 alterations. CONCLUSION: EGFR and ERBB2 alterations occur in 4% and 15% of UC, respectively. EGFRexon20ins and ERBB2exon20ins were present in 0.7% and 0.5% of UC overall and collectively define a small, but distinct, subset of UC with infrequent co-occurrence of other drivers and low TMB. Given recent promising clinical studies of inhibitors with activity against exon 20 insertions in non-small cell lung cancer, consideration should be given to developing a trial inclusive of patients with UC harbouring these alterations.
Asunto(s)
Carcinoma de Células Transicionales/genética , ADN de Neoplasias/genética , Mutación , Receptor ErbB-2/genética , Neoplasias Urológicas/genética , Anciano , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/patología , Receptores ErbB/biosíntesis , Receptores ErbB/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Receptor ErbB-2/biosíntesis , Neoplasias Urológicas/metabolismo , Neoplasias Urológicas/patologíaRESUMEN
BACKGROUND: Parathyroid carcinoma (PC) is a rare endocrine malignancy that can cause life-threatening hypercalcemia. We queried whether comprehensive genomic profiling (CGP) of PC might identify genomic alterations (GAs), which would suggest benefit from rationally matched therapeutics. METHODS: We performed hybrid-capture-based CGP to identify GAs and tumor mutational burden (TMB) in tumors from patients with this malignancy. RESULTS: There were 85 total GAs in 16 cases (5.3 GAs per case), and the median TMB was 1.7 mutations per megabase (m/Mb), with three cases having >20 m/Mb (18.7%). The genes most frequently harboring GA were CDC73 (38%), TP53 (38%), and MEN1 (31%). All MEN1-mutated cases also had loss of heterozygosity at that locus, but in contrast all CDC73-mutated cases retained heterozygosity. GAs suggesting potential benefit from matched targeted therapy were identified in 11 patients (69%) and most frequently found in PTEN (25%), NF1 (12.5%), KDR (12.5%), PIK3CA (12.5%), and TSC2 (12.5%). A patient whose tumor harbored KDR T668 K and who was treated with cabozantinib experienced a > 50% drop in parathyroid hormone level and radiographic partial response of 5.4 months with duration limited by toxicity. CONCLUSION: CGP identified GAs in PC that suggest benefit from targeted therapy, as supported by an index case of response to a matched tyrosine kinase inhibitor. Moreover, the unexpectedly high frequency of high TMB (>20 m/Mb) suggests a subset of PC may benefit from immune checkpoint inhibitors. IMPLICATIONS FOR PRACTICE: Parathyroid carcinoma (PC) is a rare endocrine malignancy that can cause life-threatening hypercalcemia. However, its molecular characteristics remain unclear, with few systemic therapeutic options available for this tumor. Hybrid-capture-based comprehensive genomic profiling of 16 primary cancers demonstrated presence of potentially actionable genomic alterations, including PTEN, NF1, KDR, PIK3CA, and TSC2, and a subset of hypermutated cancers with more than 20 mutations per megabase, the latter of which could benefit from immune checkpoint inhibitor therapy. A case benefiting from rationally matched targeted therapy for activating KDR mutation is also presented. These findings should be further investigated for their therapeutic potential.
Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Neoplasias de las Paratiroides/tratamiento farmacológico , Medicina de Precisión/métodos , Adulto , Anciano , Antineoplásicos/farmacología , Biomarcadores de Tumor/antagonistas & inhibidores , Estudios de Cohortes , Femenino , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida/métodos , Tasa de Mutación , Neoplasias de las Paratiroides/genética , Selección de PacienteRESUMEN
BACKGROUND: With the exception of trastuzumab, therapies directed at receptor tyrosine kinases (RTKs) in gastroesophageal adenocarcinomas (GEA) have had limited success. Recurrent fibroblast growth factor receptor 2 (FGFR2) alterations exist in GEA; however, little is known about the genomic landscape of FGFR2-altered GEA. We examined FGFR2 alteration frequency and frequency of co-occurring alterations in GEA. SUBJECTS, MATERIALS, AND METHODS: A total of 6,667 tissue specimens from patients with advanced GEA were assayed using hybrid capture-based genomic profiling. Tumor mutational burden (TMB) was determined on up to 1.1 Mb of sequenced DNA, and microsatellite instability was determined on 95 or 114 loci. Descriptive statistics were used to compare subgroups. RESULTS: We identified a total of 269 (4.0%) FGFR2-altered cases consisting of FGFR2-amplified (amp; 193, 72% of FGFR2-altered), FGFR2-mutated (36, 13%), FGFR2-rearranged (re; 23, 8.6%), and cases with multiple FGFR2 alterations (17, 6.3%). Co-occurring alterations in other GEA RTK targets including ERBB2 (10%), EGFR (8%), and MET (3%) were observed across all classes of FGFR2-altered GEA. Co-occurring alterations in MYC (17%), KRAS (10%), and PIK3CA (5.6%) were also observed frequently. Cases with FGFR2amp and FGFR2re were exclusively microsatellite stable. The median TMB for FGFR2-altered GEA was 3.6 mut/mb, not significantly different from a median of 4.3 mut/mb seen in FGFR2 wild-type samples. CONCLUSION: FGFR2-altered GEA is a heterogenous subgroup with approximately 20% of FGFR2-altered samples harboring concurrent RTK alterations. Putative co-occurring modifiers of FGFR2-directed therapy including oncogenic MYC, KRAS, and PIK3CA alterations were also frequent, suggesting that pretreatment molecular analyses may be needed to facilitate rational combination therapies and optimize patient selection for clinical trials. IMPLICATIONS FOR PRACTICE: Actionable receptor tyrosine kinase alterations assayed within a genomic context with therapeutic implications remain limited to HER2 amplification in gastroesophageal adenocarcinomas (GEA). Composite biomarkers and heterogeneity assessment are critical in optimizing patients selected for targeted therapies in GEA. Comprehensive genomic profiling in FGFR2-altered GEA parallels the heterogeneity findings in HER2-amplified GEA and adds support to the utility of genomic profiling in advanced gastroesophageal adenocarcinomas.
Asunto(s)
Adenocarcinoma/genética , Biomarcadores de Tumor/genética , Neoplasias Esofágicas/genética , Unión Esofagogástrica/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias Gástricas/genética , Adenocarcinoma/patología , Neoplasias Esofágicas/patología , Unión Esofagogástrica/patología , Femenino , Estudios de Seguimiento , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Estudios Retrospectivos , Neoplasias Gástricas/patologíaRESUMEN
BACKGROUND: The Polycomb Repressive Complex 1 (PRC1) regulates epigenetic silencing and is manifestly linked to rare cancer types. The X-linked BCOR gene (BCL-6 Corepressor) is a member of the PRC1 complex and potentiates transcriptional repression through BCL6 binding of PRC1. Accumulating evidence suggests that internal tandem duplications (ITD) of BCOR are oncogenic drivers in a subset of pediatric sarcomas and rare adult tumors. OBJECTIVE: We reviewed the genomic profiles of a large series of advanced cancer patients to determine the frequency and genomic spectrum of ITD of BCOR across cancer. METHODS: Tissues from 140,411 unique advanced cancers were sequenced by hybrid-capture-NGS-based comprehensive genomic profiling of 186-315 genes plus introns from 14 to 28 genes commonly rearranged in cancer, as well as RNA for 265 genes for a portion of these cases. RESULTS: BCOR-ITDs were present in 0.024% of all cases (33/140,411). Of this dataset, sarcoma cancer types were most frequent, 63.6% (21/33), either of uterine origin 52.4% (11/21), or pediatric (nonuterine) 42.8% (9/21). The identified BCOR-ITDs occurred most frequently in exon 15, near C-terminus, 69.7% (23/33), with a mean insertion length of 31.7 codons (range 30-38). Of uterine cases, an expert gynecologic pathology central review identified all these cases as having a similar high-grade morphology consistent with endometrial stromal sarcomas (ESS), and 90% of cases having a round cell component. Of the uterine sarcoma cases harboring exon 15 BCOR-ITDs, none simultaneously carried gene fusions typically associated with ESS. CONCLUSION: BCOR-ITDs define a rare subset of pediatric sarcomas and clinically aggressive endometrial stromal sarcoma cases, as defined by NGS for the first time. Our findings help delineate the pan-cancer landscape of this alteration and suggest the need for focused investigation to delineate the pro-oncogenic function of BCOR, along with any sensitivity to targeted therapies.
Asunto(s)
Neoplasias Endometriales/genética , Tumores Estromáticos Endometriales/genética , Neoplasias/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Adolescente , Adulto , Neoplasias Endometriales/patología , Tumores Estromáticos Endometriales/patología , Femenino , Humanos , Intrones , Masculino , Persona de Mediana Edad , Neoplasias/patología , Secuencias Repetidas en TándemRESUMEN
BACKGROUND: The genomic landscape of primary clear cell renal cell carcinoma (ccRCC) has been well described. However, little is known about cohort genomic alterations (GA) landscape in ccRCC metastases, or how it compares to primary tumours in aggregate. The genomic landscape of metastases may have biological, clinical, and therapeutic implications. METHODS: We collected targeted next-generation sequencing mutation calls from two independent cohorts and described the metastases GA landscape and descriptively compared it to the GA landscape in primary tumours. RESULTS: The cohort 1 (n = 578) consisted of 349 primary tumours and 229 metastases. Overall, the most common mutations in the metastases were VHL (66.8%), PBRM1 (41.87%), and SETD2 (24.7%). TP53 was more frequently mutated in metastases compared to primary tumours (14.85% versus 8.9%; p = 0.031). No other gene had significant difference in the cohort frequency of mutations between the metastases and primary tumours. Mutation burden was not significantly different between the metastases and primary tumours or between metastatic sites. The second cohort (n = 257) consisted of 177 primary tumours and 80 metastases. No differences in frequency of mutations or mutational burden were observed between primaries and metastases. CONCLUSIONS: These data support the theory that ccRCC primary tumours and metastases encompass a uniform distribution of common genomic alterations tested by next-generation sequencing targeted panels. This study does not address variability between matched primary tumours and metastases or the change in genomic alterations over time and after sequential systemic therapies.
Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia/genética , Adulto JovenRESUMEN
BACKGROUND: Collision tumors are uncommon but well described clinical entities composed of distinct tumor histologies occurring within the same anatomic site. Optimal management of patients with collision tumors remains highly variable and depends on clinical characteristics such as the involved tumor types, predominant histology, as well as the extent of disease. Comprehensive genomic profiling is a means of identifying genomic alterations to suggest benefit from targeted therapy. CASE PRESENTATION: A 78-year-old woman presented to medical oncology with liver metastases occurring within the background of a 1-year history of uveal melanoma. Biopsy of the liver metastases revealed presence of adenocarcinoma along with nests of malignant melanoma consistent with a collision tumor. The disease was refractory to several lines of conventional cytotoxic chemotherapy, and the patient later developed pulmonary metastases while on chemotherapy. The patient's tumor tissue was assayed by comprehensive genomic profiling which revealed presence of a TSC1 partial loss. The patient was subsequently initiated on temsirolimus 15 mg intravenously weekly for 4 months. Restaging imaging demonstrated a partial response to therapy by RECIST 1.1 criteria and clinical benefit for 6 months until the patient passed away secondary to unrelated causes. CONCLUSIONS: We report the first case of a collision tumor composed of adenocarcinoma and melanoma with a TSC1 mutation that objectively and durably responded to mTOR inhibition.
Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Proteínas Supresoras de Tumor/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Anciano , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Melanoma/genética , Melanoma/patología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Proteína 1 del Complejo de la Esclerosis TuberosaRESUMEN
INTRODUCTION: The emergence of osimertinib as standard of care for EGFR-mutant NSCLC has renewed the need to understand and overcome drug resistance. We sought to understand the genomics and real-world treatment landscape of NSCLC with EGFR C797S and other on- and off-target resistance mechanisms. METHODS: Comprehensive genomic profiling (CGP) results from tissue or blood samples from 93,065 patients with NSCLC were queried for osimertinib EGFR second-site resistance mutations (ssEGFRms; C797, L718, G724, G796, L792). A real-world electronic health record-derived deidentified clinicogenomic database of patients with NSCLC undergoing CGP from approximately 280 U.S. cancer clinics was queried to assess post-osimertinib resistance and clinical treatment outcomes. RESULTS: A ssEGFRm was identified in 239 of 8845 (2.7%) EGFR-driven (L858R or exon 19 deletion) NSCLCs, most frequently C797 (71%), L718 (15%), and G724 (9.5%). ssEGFRms were not equally distributed across drivers; C797 and G724 changes strongly favored exon 19 deletion and L718, G796 and L792 favored L858R. Post-osimertinib CGP detected ssEGFRm in 19% of the cases (39 of 205); in paired pre-/post-osimertinib samples, on- and off-target resistance was largely mutually exclusive and observed in 24% and 27% of the cases, respectively. Of 391 patients with post-osimertinib treatment data, 62% received a chemotherapy-based regimen, whereas 25% received a targeted therapy or clinical study drug. Median real-world overall survival was 11.4 months from osimertinib progression. CONCLUSIONS: The osimertinib resistance landscape is diverse with on-target ssEGFRm and off-target resistance detected in tissue and liquid biopsy. Post-osimertinib, patients are receiving primarily chemotherapy-based regimens with poor outcomes, and CGP at resistance may offer an opportunity to inform therapeutic development and improve treatment selection.
Asunto(s)
Acrilamidas , Carcinoma de Pulmón de Células no Pequeñas , Indoles , Neoplasias Pulmonares , Pirimidinas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Receptores ErbB/uso terapéutico , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Mutación , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , GenómicaRESUMEN
PURPOSE: Liquid biopsy (LBx) for tumor profiling is increasingly used, but concerns remain regarding negative results. A lack of results may truly reflect tumor genomics, or it may be a false negative that would be clarified by tissue testing. A method of distinguishing between these scenarios could help clarify when follow-on tissue testing is valuable. EXPERIMENTAL DESIGN: Here we evaluate circulating tumor DNA (ctDNA) tumor fraction (TF), a quantification of ctDNA in LBx samples, for utility in identifying true negative results. We assessed concordance between LBx and tissue-based results, stratified by ctDNA TF, in a real-world genomic dataset of paired samples across multiple disease types. We also evaluated the frequency of tissue results identifying driver alterations in patients with lung cancer after negative LBx in a real-world clinicogenomic database. RESULTS: The positive percent agreement and negative predictive value between liquid and tissue samples for driver alterations increased from 63% and 66% for all samples to 98% and 97% in samples with ctDNA TF ≥1%. Among 505 patients with lung cancer with no targetable driver alterations found by LBx who had subsequent tissue-based profiling, 37% had a driver, all of which had ctDNA TF <1%. CONCLUSIONS: Patients with lung cancer with negative LBx and ctDNA TF ≥1% are unlikely to have a driver detected on confirmatory tissue testing; such informative negative results may benefit instead from prompt treatment initiation. Conversely, negative LBx with ctDNA TF <1% will commonly have a driver identified by follow-up tissue testing and should be prioritized for reflex testing.