RESUMEN
Ross River virus (RRV) and Barmah Forest virus (BFV) are arthritogenic arthropod-borne viruses (arboviruses) that exhibit generalist host associations and share distributions in Australia and Papua New Guinea (PNG). Using stochastic mapping and discrete-trait phylogenetic analyses, we profiled the independent evolution of RRV and BFV signature mutations. Analysis of 186 RRV and 88 BFV genomes demonstrated their viral evolution trajectories have involved repeated selection of mutations, particularly in the nonstructural protein 1 (nsP1) and envelope 3 (E3) genes suggesting convergent evolution. Convergent mutations in the nsP1 genes of RRV (residues 248 and 441) and BFV (residues 297 and 447) may be involved with catalytic enzyme mechanisms and host membrane interactions during viral RNA replication and capping. Convergent E3 mutations (RRV site 59 and BFV site 57) may be associated with enzymatic furin activity and cleavage of E3 from protein precursors assisting viral maturation and infectivity. Given their requirement to replicate in disparate insect and vertebrate hosts, convergent evolution in RRV and BFV may represent a dynamic link between their requirement to selectively 'fine-tune' intracellular host interactions and viral replicative enzymatic processes. Despite evidence of evolutionary convergence, selection pressure analyses did not reveal any RRV or BFV amino acid sites under strong positive selection and only weak positive selection for nonstructural protein sites. These findings may indicate that their alphavirus ancestors were subject to positive selection events which predisposed ongoing pervasive convergent evolution, and this largely supports continued purifying selection in RRV and BFV populations during their replication in mosquito and vertebrate hosts.
RESUMEN
BACKGROUND: Dengue (DENV), Ross River (RRV) and Barmah Forest viruses (BFV) are the most common human arboviral infections in Australia and the Pacific Island Countries and Territories (PICTs) and are associated with debilitating symptoms. All are nationally notifiable in Australia, but routine surveillance is limited to a few locations in the PICTs. Understanding the level of human exposure to these viruses can inform disease management and mitigation strategies. To assess the historic and current seroprevalence of DENV, RRV and BFV in Australia and the PICTs we conducted a systematic literature review of all published quantitative serosurveys. METHODOLOGY AND PRINCIPAL FINDINGS: The Preferred Reporting of Items for Systematic Reviews and Meta-Analyses procedures were adopted to produce a protocol to systematically search for published studies reporting the seroprevalence of DENV, RRV and BFV in Australia and the PICTs. Data for author, research year, location, study population, serosurvey methods and positive tests were extracted. A total of 41 papers, reporting 78 serosurveys of DENV, RRV and BFV including 62,327 samples met the inclusion criteria for this review. Seroprevalence varied depending on the assay used, strategy of sample collection and location of the study population. Significant differences were observed in reported seropositivity depending on the sample collection strategy with clinically targeted sampling reporting the highest seroprevalence across all three viruses. Non-stratified seroprevalence showed wide ranges in reported positivity with DENV 0.0% - 95.6%, RRV 0.0% - 100.0%, and BFV 0.3% - 12.5%. We discuss some of the causes of variation including serological methods used, selection bias in sample collection including clinical or environmental associations, and location of study site. We consider the extent to which serosurveys reflect the epidemiology of the viruses and provide broad recommendations regarding the conduct and reporting of arbovirus serosurveys. CONCLUSIONS AND SIGNIFICANCE: Human serosurveys provide important information on the extent of human exposure to arboviruses across: (1) time, (2) place, and (3) person (e.g., age, gender, clinical presentation etc). Interpreting results obtained at these scales has the potential to inform us about transmission cycles, improve diagnostic surveillance, and mitigate future outbreaks. Future research should streamline methods and reduce bias to allow a better understanding of the burden of these diseases and the factors associated with seroprevalence. Greater consideration should be given to the interpretation of seroprevalence in studies, and increased rigour applied in linking seroprevalence to transmission dynamics.
Asunto(s)
Alphavirus , Arbovirus , Culicidae , Dengue , Animales , Australia/epidemiología , Pollos , Dengue/epidemiología , Bosques , Humanos , Estudios SeroepidemiológicosRESUMEN
Changes to Australia's climate and land-use patterns could result in expanded spatial and temporal distributions of endemic mosquito vectors including Aedes and Culex species that transmit medically important arboviruses. Climate and land-use changes greatly influence the suitability of habitats for mosquitoes and their behaviors such as mating, feeding and oviposition. Changes in these behaviors in turn determine future species-specific mosquito diversity, distribution and abundance. In this review, we discuss climate and land-use change factors that influence shifts in mosquito distribution ranges. We also discuss the predictive and epidemiological merits of incorporating these factors into a novel integrated statistical (SSDM) and mechanistic species distribution modelling (MSDM) framework. One potentially significant merit of integrated modelling is an improvement in the future surveillance and control of medically relevant endemic mosquito vectors such as Aedes vigilax and Culex annulirostris, implicated in the transmission of many arboviruses such as Ross River virus and Barmah Forest virus, and exotic mosquito vectors such as Aedes aegypti and Aedes albopictus. We conducted a focused literature search to explore the merits of integrating SSDMs and MSDMs with biotic and environmental variables to better predict the future range of endemic mosquito vectors. We show that an integrated framework utilising both SSDMs and MSDMs can improve future mosquito-vector species distribution projections in Australia. We recommend consideration of climate and environmental change projections in the process of developing land-use plans as this directly impacts mosquito-vector distribution and larvae abundance. We also urge laboratory, field-based researchers and modellers to combine these modelling approaches. Having many different variations of integrated (SDM) modelling frameworks could help to enhance the management of endemic mosquitoes in Australia. Enhanced mosquito management measures could in turn lead to lower arbovirus spread and disease notification rates.
Asunto(s)
Biodiversidad , Culicidae/fisiología , Mosquitos Vectores/fisiología , Distribución Animal , Animales , Australia , Cambio Climático , Culicidae/clasificación , Control de Mosquitos , Mosquitos Vectores/clasificaciónRESUMEN
Mosquito-borne diseases are associated with major global health burdens. Aedes spp. and Culex spp. are primarily responsible for the transmission of the most medically important mosquito-borne viruses, including dengue virus, West Nile virus and Zika virus. Despite the burden of these pathogens on human populations, the interactions between viruses and their mosquito hosts remain enigmatic. Viruses enter the midgut of a mosquito following the mosquito's ingestion of a viremic blood meal. During infection, virus recognition by the mosquito host triggers their antiviral defense mechanism. Of these host defenses, activation of the RNAi pathway is the main antiviral mechanism, leading to the degradation of viral RNA, thereby inhibiting viral replication and promoting viral clearance. However, whilst antiviral host defense mechanisms limit viral replication, the mosquito immune system is unable to effectively clear the virus. As such, these viruses can establish persistent infection with little or no fitness cost to the mosquito vector, ensuring life-long transmission to humans. Understanding of the mosquito innate immune response enables the discovery of novel antivectorial strategies to block human transmission. This review provides an updated and concise summary of recent studies on mosquito antiviral immune responses, which is a key determinant for successful virus transmission. In addition, we will also discuss the factors that may contribute to persistent infection in mosquito hosts. Finally, we will discuss current mosquito transmission-blocking strategies that utilize genetically modified mosquitoes and Wolbachia-infected mosquitoes for resistance to pathogens.
Asunto(s)
Culicidae/inmunología , Culicidae/virología , Animales , Humanos , Inmunidad Innata , Control de Mosquitos , Interferencia de ARN , ARN ViralRESUMEN
Alphaviruses are arthropod-borne viruses and are predominantly transmitted via mosquito vectors. This vector preference by alphaviruses raises the important question of the determinants that contribute to vector competence. There are several tissue barriers of the mosquito that the virus must overcome in order to establish a productive infection. Of importance are the midgut, basal lamina and the salivary glands. Infection of the salivary glands is crucial for virus transmission during the mosquito's subsequent bloodfeed. Other factors that may contribute to vector competence include the microflora and parasites present in the mosquito, environmental conditions, the molecular determinants of the virus to adapt to the vector, as well as the effect of co-infection with other viruses. Though mosquito innate immunity is a contributing factor to vector competence, it will not be discussed in this review. Detailed understanding of these factors will be instrumental in minimising transmission of alphaviral diseases.