Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cytometry A ; 105(3): 181-195, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37984809

RESUMEN

Multiparameter flow cytometry (MFC) has emerged as a standard method for quantifying measurable residual disease (MRD) in acute myeloid leukemia. However, the limited number of available channels on conventional flow cytometers requires the division of a diagnostic sample into several tubes, restricting the number of cells and the complexity of immunophenotypes that can be analyzed. Full spectrum flow cytometers overcome this limitation by enabling the simultaneous use of up to 40 fluorescent markers. Here, we used this approach to develop a good laboratory practice-conform single-tube 19-color MRD detection assay that complies with recommendations of the European LeukemiaNet Flow-MRD Working Party. We based our assay on clinically-validated antibody clones and evaluated its performance on an IVD-certified full spectrum flow cytometer. We measured MRD and normal bone marrow samples and compared the MRD data to a widely used reference MRD-MFC panel generating highly concordant results. Using our newly developed single-tube panel, we established reference values in healthy bone marrow for 28 consensus leukemia-associated immunophenotypes and introduced a semi-automated dimensionality-reduction, clustering and cell type identification approach that aids the unbiased detection of aberrant cells. In summary, we provide a comprehensive full spectrum MRD-MFC workflow with the potential for rapid implementation for routine diagnostics due to reduced cell requirements and ease of data analysis with increased reproducibility in comparison to conventional FlowMRD routines.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Citometría de Flujo/métodos , Reproducibilidad de los Resultados , Leucemia Mieloide Aguda/diagnóstico , Médula Ósea/metabolismo , Neoplasia Residual/diagnóstico
2.
Blood ; 136(5): 596-609, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32270193

RESUMEN

Overcoming drug resistance and targeting cancer stem cells remain challenges for curative cancer treatment. To investigate the role of microRNAs (miRNAs) in regulating drug resistance and leukemic stem cell (LSC) fate, we performed global transcriptome profiling in treatment-naive chronic myeloid leukemia (CML) stem/progenitor cells and identified that miR-185 levels anticipate their response to ABL tyrosine kinase inhibitors (TKIs). miR-185 functions as a tumor suppressor: its restored expression impaired survival of drug-resistant cells, sensitized them to TKIs in vitro, and markedly eliminated long-term repopulating LSCs and infiltrating blast cells, conferring a survival advantage in preclinical xenotransplantation models. Integrative analysis with mRNA profiles uncovered PAK6 as a crucial target of miR-185, and pharmacological inhibition of PAK6 perturbed the RAS/MAPK pathway and mitochondrial activity, sensitizing therapy-resistant cells to TKIs. Thus, miR-185 presents as a potential predictive biomarker, and dual targeting of miR-185-mediated PAK6 activity and BCR-ABL1 may provide a valuable strategy for overcoming drug resistance in patients.


Asunto(s)
Resistencia a Antineoplásicos/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , MicroARNs/genética , Células Madre Neoplásicas/patología , Quinasas p21 Activadas/genética , Animales , Regulación Leucémica de la Expresión Génica/genética , Xenoinjertos , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Ratones SCID , MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/fisiología , Quinasas p21 Activadas/metabolismo
3.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502319

RESUMEN

HOXA9 and MEIS1 are frequently upregulated in acute myeloid leukemia (AML), including those with MLL-rearrangement. Because of their pivotal role in hemostasis, HOXA9 and MEIS1 appear non-druggable. We, thus, interrogated gene expression data of pre-leukemic (overexpressing Hoxa9) and leukemogenic (overexpressing Hoxa9 and Meis1; H9M) murine cell lines to identify cancer vulnerabilities. Through gene expression analysis and gene set enrichment analyses, we compiled a list of 15 candidates for functional validation. Using a novel lentiviral multiplexing approach, we selected and tested highly active sgRNAs to knockout candidate genes by CRISPR/Cas9, and subsequently identified a H9M cell growth dependency on the cytosolic phospholipase A2 (PLA2G4A). Similar results were obtained by shRNA-mediated suppression of Pla2g4a. Remarkably, pharmacologic inhibition of PLA2G4A with arachidonyl trifluoromethyl ketone (AACOCF3) accelerated the loss of H9M cells in bulk cultures. Additionally, AACOCF3 treatment of H9M cells reduced colony numbers and colony sizes in methylcellulose. Moreover, AACOCF3 was highly active in human AML with MLL rearrangement, in which PLA2G4A was significantly higher expressed than in AML patients without MLL rearrangement, and is sufficient as an independent prognostic marker. Our work, thus, identifies PLA2G4A as a prognostic marker and potential therapeutic target for H9M-dependent AML with MLL-rearrangement.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Sistemas CRISPR-Cas , Regulación Neoplásica de la Expresión Génica , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Proteínas de Homeodominio/metabolismo , Leucemia Mieloide Aguda/patología , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Fosfolipasas A2 Grupo IV/genética , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Células Tumorales Cultivadas
5.
Nucleic Acids Res ; 45(17): 10259-10269, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28973459

RESUMEN

Functional impairment or complete loss of type VII collagen, caused by mutations within COL7A1, lead to the severe recessive form of the skin blistering disease dystrophic epidermolysis bullosa (RDEB). Here, we successfully demonstrate RNA trans-splicing as an auspicious repair option for mutations located in a wide range of exons by fully converting an RDEB phenotype in an ex vivo pre-clinical mouse model based on xenotransplantation. Via a self-inactivating (SIN) lentiviral vector a 3' RNA trans-splicing molecule, capable of replacing COL7A1 exons 65-118, was delivered into type VII collagen deficient patient keratinocytes, carrying a homozygous mutation in exon 80 (c.6527insC). Following vector integration, protein analysis of an isolated corrected single cell clone showed secretion of the corrected type VII collagen at similar levels compared to normal keratinocytes. To confirm full phenotypic and long-term correction in vivo, patches of skin equivalents expanded from the corrected cell clone were grafted onto immunodeficient mice. Immunolabelling of 12 weeks old skin specimens showed strong expression of human type VII collagen restricted to the basement membrane zone. We demonstrate that the RNA trans-splicing technology combined with a SIN lentiviral vector is suitable for an ex vivo molecular therapy approach and thus adaptable for clinical application.


Asunto(s)
Colágeno Tipo VII/genética , Epidermólisis Ampollosa Distrófica/terapia , Terapia Genética/métodos , Vectores Genéticos/uso terapéutico , ARN/uso terapéutico , Trans-Empalme , Animales , Membrana Basal/metabolismo , Células Cultivadas , Colágeno Tipo VII/deficiencia , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Vectores Genéticos/genética , Vectores Genéticos/farmacología , Xenoinjertos , Humanos , Queratinocitos/metabolismo , Queratinocitos/trasplante , Lentivirus/genética , Ratones , Modelos Animales , ARN/administración & dosificación , ARN/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Trasplante de Piel , Transgenes
6.
Mol Ther ; 25(3): 606-620, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28253481

RESUMEN

Retroviral integration site analysis and barcoding have been instrumental for multiplex clonal fate mapping, although their use imposes an inherent delay between sample acquisition and data analysis. Monitoring of multiple cell populations in real time would be advantageous, but multiplex assays compatible with flow cytometric tracking of competitive growth behavior are currently limited. We here describe the development and initial validation of three generations of lentiviral fluorescent genetic barcoding (FGB) systems that allow the creation of 26, 14, or 6 unique labels. Color-coded populations could be tracked in multiplex in vitro assays for up to 28 days by flow cytometry using all three vector systems. Those involving lower levels of multiplexing eased color-code generation and the reliability of vector expression and enabled functional in vitro and in vivo studies. In proof-of-principle experiments, FGB vectors facilitated in vitro multiplex screening of microRNA (miRNA)-induced growth advantages, as well as the in vivo recovery of color-coded progeny of murine and human hematopoietic stem cells. This novel series of FGB vectors provides new tools for assessing comparative growth properties in in vitro and in vivo multiplexing experiments, while simultaneously allowing for a reduction in sample numbers by up to 26-fold.


Asunto(s)
Rastreo Celular/métodos , Expresión Génica , Genes Reporteros , Vectores Genéticos/genética , Lentivirus/genética , Proteínas Luminiscentes/genética , Diferenciación Celular , Codón , Citometría de Flujo , Orden Génico , Técnicas de Transferencia de Gen , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Proteínas Luminiscentes/metabolismo , MicroARNs/genética , Reproducibilidad de los Resultados , Transducción Genética
7.
Retrovirology ; 14(1): 48, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29047401

RESUMEN

The authors wish to apologize for an error within the scale bar of the microarray heatmap in Additional File 5 of the supplementary information. Two values were incorrectly displayed on the scale bar (11 instead of 10 and 13 instead of 12).

8.
Retrovirology ; 14(1): 34, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28569216

RESUMEN

BACKGROUND: Retroviral vectors are derived from wild-type retroviruses, can be used to study retrovirus-host interactions and are effective tools in gene and cell therapy. However, numerous cell types are resistant or less permissive to retrovirus infection due to the presence of active defense mechanisms, or the absence of important cellular host co-factors. In contrast to multipotent stem cells, pluripotent stem cells (PSC) have potential to differentiate into all three germ layers. Much remains to be elucidated in the field of anti-viral immunity in stem cells, especially in PSC. RESULTS: In this study, we report that transduction with HIV-1-based, lentiviral vectors (LV) is impaired in murine PSC. Analyses of early retroviral events in induced pluripotent stem cells (iPSC) revealed that the restriction is independent of envelope choice and does not affect reverse transcription, but perturbs nuclear entry and proviral integration. Proteasomal inhibition by MG132 could not circumvent the restriction. However, prevention of cyclophilin A (CypA) binding to the HIV-1 capsid via use of either a CypA inhibitor (cyclosporine A) or CypA-independent capsid mutants improved transduction. In addition, application of higher vector doses also increased transduction. Our data revealed a CypA mediated restriction in iPSC, which was acquired during reprogramming, associated with pluripotency and relieved upon subsequent differentiation. CONCLUSIONS: We showed that murine PSC and iPSC are less susceptible to LV. The block observed in iPSC was CypA-dependent and resulted in reduced nuclear entry of viral DNA and proviral integration. Our study helps to improve transduction of murine pluripotent cells with HIV-1-based vectors and contributes to our understanding of retrovirus-host interactions in PSC.


Asunto(s)
Vectores Genéticos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/virología , Lentivirus/genética , Animales , Proteínas de la Cápside/genética , Proteínas Portadoras/genética , Línea Celular , Ciclofilina A/metabolismo , Ciclosporina/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , VIH-1/genética , Interacciones Huésped-Patógeno , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Lentivirus/fisiología , Leupeptinas/farmacología , Ratones , Transcripción Reversa/efectos de los fármacos , Transducción Genética , Integración Viral/efectos de los fármacos , Internalización del Virus
9.
Cytometry A ; 87(5): 405-18, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25728583

RESUMEN

Lentiviral and gammaretroviral vectors are state-of-the-art tools for transgene expression within target cells. The integration of these vectors can be deliberately suppressed to derive a transient gene expression system based on extrachromosomal circular episomes with intact coding regions. These episomes can be used to deliver DNA templates and to express RNA or protein. Importantly, transient gene transfer avoids the genotoxic side effects of integrating vectors. Restricting their applicability, episomes are rapidly lost upon dilution in dividing target cells. Addressing this limitation, we could establish comparably stable percentages of transgene-positive cells over prolonged time periods in proliferating cells by repeated transductions. Flow cytometry was applied for kinetic analyses to decipher the impact of individual parameters on the kinetics of fluoroprotein expression after episomal retransduction and to visualize sequential and simultaneous transfer of heterologous fluoroproteins. Expression windows could be exactly timed by the number of transduction steps. The kinetics of signal loss was affected by the cell proliferation rate. The transfer of genes encoding fluoroproteins with different half-lives revealed a major impact of protein stability on temporal signal distribution and accumulation, determining optimal retransduction intervals. In addition, sequential transductions proved broad applicability in different cell types and using different envelope pseudotypes without receptor overload. Stable percentages of cells coexpressing multiple transgenes could be generated upon repeated coadministration of different episomal vectors. Alternatively, defined patterns of transgene expression could be recapitulated by sequential transductions. Altogether, we established a methodology to control and adjust a temporally defined window of transgene expression using retroviral episomal vectors. Combined with the highly efficient cell entry of these vectors while avoiding integration, the developed technology is of great significance for a broad panel of applications, including transcription-factor-based induced cell fate conversion and controlled transfer of genetically encoded RNA- or protein-based drugs.


Asunto(s)
Expresión Génica , Vectores Genéticos , Transducción Genética/métodos , Humanos , Cinética , Lentivirus/genética , Plásmidos/genética , Transgenes/genética
10.
Mol Ther ; 22(5): 919-28, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24434935

RESUMEN

Methods for generating induced pluripotent stem cells (iPSCs) for disease modeling and cell therapies have progressed from integrating vectors to transient delivery of reprogramming factors, avoiding permanent genomic modification. A major limitation of unmodified iPSCs is the assessment of their distribution and contribution to adverse reactions in autologous cell therapy. Here, we report that polycistronic lentiviral vectors with single Flp recombinase (Flp) recognition target (FRT) sites can be used to generate murine iPSCs that are devoid of the reprogramming cassette but carry an intergenic 300-bp long terminal repeat sequence. Performing quantitative polymerase chain reaction on this marker, we could determine genetic identity and tissue contribution of iPSC-derived teratomas in mice. Moreover, we generated iPSCs carrying heterospecific FRT twin sites, enabling excision and recombinase-mediated cassette exchange (RMCE) of the reprogramming cassette for another expression unit of choice. Following screening of iPSCs for "safe harbor" integration sites, expression cassettes were introduced by RMCE into various previously silenced loci of selected single-copy iPSCs. Analysis of DNA methylation showed that RMCE reverted the local epigenetic signature, which allowed transgene expression in undifferentiated iPSCs and in differentiated progeny. These findings support the concept of creating clonotypically defined exchangeable and traceable pluripotent stem cells for disease research and cell therapy.


Asunto(s)
Diferenciación Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos , ADN Nucleotidiltransferasas/genética , Células Madre Pluripotentes Inducidas , Secuencias Repetidas Terminales/genética , Animales , Reprogramación Celular , Metilación de ADN , Vectores Genéticos , Lentivirus/genética , Ratones
11.
J Virol ; 87(23): 12721-36, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24049186

RESUMEN

Retroviral integrase (IN) proteins catalyze the permanent integration of proviral genomes into host DNA with the help of cellular cofactors. Lens epithelium-derived growth factor (LEDGF) is a cofactor for lentiviruses, including human immunodeficiency virus type 1 (HIV-1), and targets lentiviral integration toward active transcription units in the host genome. In contrast to lentiviruses, murine leukemia virus (MLV), a gammaretrovirus, tends to integrate near transcription start sites. Here, we show that the bromodomain and extraterminal domain (BET) proteins BRD2, BRD3, and BRD4 interact with gammaretroviral INs and stimulate the catalytic activity of MLV IN in vitro. We mapped the interaction site to a characteristic structural feature within the BET protein extraterminal (ET) domain and to three amino acids in MLV IN. The ET domains of different BET proteins stimulate MLV integration in vitro and, in the case of BRD2, also in vivo. Furthermore, two small-molecule BET inhibitors, JQ1 and I-BET, decrease MLV integration and shift it away from transcription start sites. Our data suggest that BET proteins might act as chromatin-bound acceptors for the MLV preintegration complex. These results could pave a way to redirecting MLV DNA integration as a basis for creating safer retroviral vectors.


Asunto(s)
Cromatina/metabolismo , Virus de la Leucemia Murina/fisiología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Infecciones por Retroviridae/metabolismo , Factores de Transcripción/metabolismo , Integración Viral , Secuencias de Aminoácidos , Animales , Proteínas de Ciclo Celular , Línea Celular , Células HEK293 , Humanos , Integrasas/genética , Integrasas/metabolismo , Virus de la Leucemia Murina/enzimología , Virus de la Leucemia Murina/genética , Ratones , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Infecciones por Retroviridae/genética , Infecciones por Retroviridae/virología , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
12.
Stem Cells ; 31(3): 488-99, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23307570

RESUMEN

Methylation-induced gene silencing represents a major obstacle to efficient transgene expression in pluripotent cells and thereof derived tissues. As ubiquitous chromatin opening elements (UCOE) have been shown to prevent transgene silencing in cell lines and primary hematopoietic cells, we hypothesized a similar activity in pluripotent cells. This concept was investigated in the context of cytidine deaminase (CDD) gene transfer, an approach to render hematopoietic cells resistant to the chemotherapeutic agent Ara-C. When murine induced pluripotent stem cells (iPSC)/embryonic stem cells (ESCs) were transduced with self-inactivating lentiviral vectors using housekeeping (truncated elongation factor 1α; EFS) or viral (spleen focus-forming virus; SFFV) promoters, incorporation of an heterogeneous nuclear ribonucleoproteins A2 B1/chromobox protein homolog 3 locus-derived UCOE (A2UCOE) significantly increased transgene expression and Ara-C resistance and effectively prevented silencing of the SFFV-promoter. The EFS promoter showed relatively stable transgene expression in naïve iPSCs, but rapid transgene silencing was observed upon hematopoietic differentiation. When combined with the A2UCOE, however, the EFS promoter yielded stable transgene expression in 73% ± 6% of CD41(+) hematopoietic progeny, markedly increased CDD expression levels, and significantly enhanced Ara-C resistance in clonogenic cells. Bisulfite sequencing revealed protection from differentiation-induced promoter CpG methylation to be associated with these effects. Similar transgene promoting activities of the A2UCOE were observed during murine neurogenic differentiation, in naïve human pluripotent cells, and during nondirected multilineage differentiation of these cells. Thus, our data provide strong evidence that UCOEs can efficiently prevent transgene silencing in iPS/ESCs and their differentiated progeny and thereby introduce a generalized concept to circumvent differentiation-induced transgene silencing during the generation of advanced iPSC/ESC-based gene and cell therapy products.


Asunto(s)
Cromatina/genética , Silenciador del Gen , Células Madre Pluripotentes Inducidas/fisiología , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Transgenes
13.
Blood ; 117(11): 3053-64, 2011 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-21248062

RESUMEN

Gene therapy has proven its potential to cure diseases of the hematopoietic system. However, severe adverse events observed in clinical trials have demanded improved gene-transfer conditions. Whereas progress has been made to reduce the genotoxicity of integrating gene vectors, the role of pretransplantation cultivation is less well investigated. We observed that the STIF (stem cell factor [SCF], thrombopoietin [TPO], insulin-like growth factor-2 [IGF-2], and fibroblast growth factor-1 [FGF-1]) cytokine cocktail developed to effectively expand murine hematopoietic stem cells (HSCs) also supports the expansion of leukemia-initiating insertional mutants caused by gammaretroviral gene transfer. We compared 4 protocols to examine the impact of prestimulation and posttransduction culture in STIF in the context of lentiviral gene transfer. Observing 56 transplanted mice for up to 9.5 months, we found consistent engraftment and gene-marking rates after prolonged ex vivo expansion. Although a lentiviral vector with a validated insertional-mutagenic potential was used, longitudinal analysis identifying > 7000 integration sites revealed polyclonal fluctuations, especially in "expanded" groups, with de novo detection of clones even at late time points. Posttransduction expansion in STIF did not enrich clones with insertions in proto-oncogenes but rather increased clonal diversity. Our data indicate that lentiviral transduction in optimized media mediates intact polyclonal hematopoiesis without selection for growth-promoting hits by posttransduction expansion.


Asunto(s)
Vectores Genéticos/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Lentivirus/genética , Transducción Genética , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Quimerismo , Células Clonales , Medios de Cultivo/farmacología , Citocinas/farmacología , Dosificación de Gen/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Lentivirus/efectos de los fármacos , Leucemia/patología , Ratones , Ratones Endogámicos C57BL , Mutagénesis Insercional/efectos de los fármacos , Oncogenes/genética , Fenotipo , Reacción en Cadena de la Polimerasa , Factores de Tiempo
14.
Mol Ther ; 20(5): 1022-32, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22334016

RESUMEN

Comparative integrome analyses have highlighted alpharetroviral vectors with a relatively neutral, and thus favorable, integration spectrum. However, previous studies used alpharetroviral vectors harboring viral coding sequences and intact long-terminal repeats (LTRs). We recently developed self-inactivating (SIN) alpharetroviral vectors with an advanced split-packaging design. In a murine bone marrow (BM) transplantation model we now compared alpharetroviral, gammaretroviral, and lentiviral SIN vectors and showed that all vectors transduced hematopoietic stem cells (HSCs), leading to comparable, sustained multilineage transgene expression in primary and secondary transplanted mice. Alpharetroviral integrations were decreased near transcription start sites, CpG islands, and potential cancer genes compared with gammaretroviral, and decreased in genes compared with lentiviral integrations. Analyzing the transcriptome and intragenic integrations in engrafting cells, we observed stronger correlations between in-gene integration targeting and transcriptional activity for gammaretroviral and lentiviral vectors than for alpharetroviral vectors. Importantly, the relatively "extragenic" alpharetroviral integration pattern still supported long-term transgene expression upon serial transplantation. Furthermore, sensitive genotoxicity studies revealed a decreased immortalization incidence compared with gammaretroviral and lentiviral SIN vectors. We conclude that alpharetroviral SIN vectors have a favorable integration pattern which lowers the risk of insertional mutagenesis while supporting long-term transgene expression in the progeny of transplanted HSCs.


Asunto(s)
Alpharetrovirus/genética , Vectores Genéticos , Células Madre Hematopoyéticas/metabolismo , Transgenes , Animales , Línea Celular , Islas de CpG , Gammaretrovirus/genética , Marcación de Gen , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Humanos , Lentivirus/genética , Ratones , Mutagénesis Insercional , Factores de Riesgo , Secuencias Repetidas Terminales , Sitio de Iniciación de la Transcripción , Transcriptoma/genética , Transducción Genética
15.
Nucleic Acids Res ; 39(16): 7147-60, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21609958

RESUMEN

The Sleeping Beauty (SB) transposase and its newly developed hyperactive variant, SB100X, are of increasing interest for genome modification in experimental models and gene therapy. The potential cytotoxicity of transposases requires careful assessment, considering that residual integration events of transposase expression vectors delivered by physicochemical transfection or episomal retroviral vectors may lead to permanent transposase expression and resulting uncontrollable transposition. Comparing retrovirus-based approaches for delivery of mRNA, episomal DNA or integrating DNA, we found that conventional SB transposase, SB100X and a newly developed codon-optimized SB100Xo may trigger premitotic arrest and apoptosis. Cell stress induced by continued SB overexpression was self-limiting due to the induction of cell death, which occurred even in the absence of a co-transfected transposable element. The cytotoxic effects of SB transposase were strictly dose dependent and heralded by induction of p53 and c-Jun. Inactivating mutations in SB's catalytic domain could not abrogate cytotoxicity, suggesting a mechanism independent of DNA cleavage activity. An improved approach of retrovirus particle-mediated mRNA transfer allowed transient and dose-controlled expression of SB100X, supported efficient transposition and prevented cytotoxicity. Transposase-mediated gene transfer can thus be tuned to maintain high efficiency in the absence of overt cell damage.


Asunto(s)
ARN Mensajero/metabolismo , Transducción Genética , Transposasas/genética , Inhibidores de Caspasas , Ciclo Celular , Línea Celular , Inhibidores de Cisteína Proteinasa/farmacología , ADN Nucleotidiltransferasas/genética , ADN Nucleotidiltransferasas/metabolismo , Vectores Genéticos , Células HeLa , Humanos , Retroviridae/genética , Transposasas/metabolismo , Virión/genética
16.
Proc Natl Acad Sci U S A ; 107(17): 7805-10, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20385817

RESUMEN

Retroviral particles assemble a few thousand units of the Gag polyproteins. Proteolytic cleavage mediated by the retroviral protease forms the bioactive retroviral protein subunits before cell entry. We hypothesized that this process could be exploited for targeted, transient, and dose-controlled transduction of nonretroviral proteins into cultured cells. We demonstrate that gammaretroviral particles tolerate the incorporation of foreign protein at several positions of their Gag or Gag-Pol precursors. Receptor-mediated and thus potentially cell-specific uptake of engineered particles occurred within minutes after cell contact. Dose and kinetics of nonretroviral protein delivery were dependent upon the location within the polyprotein precursor. Proteins containing nuclear localization signals were incorporated into retroviral particles, and the proteins of interest were released from the precursor by the retroviral protease, recognizing engineered target sites. In contrast to integration-defective lentiviral vectors, protein transduction by retroviral polyprotein precursors was completely transient, as protein transducing retrovirus-like particles could be produced that did not transduce genes into target cells. Alternatively, bifunctional protein-delivering particle preparations were generated that maintained their ability to serve as vectors for retroviral transgenes. We show the potential of this approach for targeted genome engineering of induced pluripotent stem cells by delivering the site-specific DNA recombinase, Flp. Protein transduction of Flp after proteolytic release from the matrix position of Gag allowed excision of a lentivirally transduced cassette that concomitantly expresses the canonical reprogramming transcription factors (Oct4, Klf4, Sox2, c-Myc) and a fluorescent marker gene, thus generating induced pluripotent stem cells that are free of lentivirally transduced reprogramming genes.


Asunto(s)
Productos del Gen gag/biosíntesis , Virus de la Leucemia Murina/metabolismo , Transducción Genética/métodos , Virión/metabolismo , Internalización del Virus , Productos del Gen gag/genética , Ingeniería Genética/métodos , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Virus de la Leucemia Murina/genética , Señales de Localización Nuclear/metabolismo , Péptido Hidrolasas/metabolismo , Virión/genética
17.
Leukemia ; 37(1): 79-90, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517672

RESUMEN

Relapse is a major challenge to therapeutic success in acute myeloid leukemia (AML) and can be partly associated with heterogeneous leukemic stem cell (LSC) properties. In the murine Hoxa9/Meis1-dependent (H9M) AML model, LSC potential lies in three defined immunophenotypes, including Lin-cKit+ progenitor cells (Lin-), Gr1+CD11b+cKit+ myeloid cells, and lymphoid cells (Lym+). Previous reports demonstrated their interconversion and distinct drug sensitivities. In contrast, we here show that H9M AML is hierarchically organized. We, therefore, tracked the developmental potential of LSC phenotypes. This unexpectedly revealed a substantial fraction of Lin- LSCs that failed to regenerate Lym+ LSCs, and that harbored reduced leukemogenic potential. However, Lin- LSCs capable of producing Lym+ LSCs as well as Lym+ LSCs triggered rapid disease development suggestive of their high relapse-driving potential. Transcriptional analyses revealed that B lymphoid master regulators, including Sox4 and Bach2, correlated with Lym+ LSC development and presumably aggressive disease. Lentiviral overexpression of Sox4 and Bach2 induced dedifferentiation of H9M cells towards a lineage-negative state in vitro as the first step of lineage conversion. This work suggests that the potency to initiate a partial B lymphoid primed transcriptional program as present in infant AML correlates with aggressive disease and governs the H9M LSC hierarchy.


Asunto(s)
Leucemia Mieloide Aguda , Células Precursoras de Linfocitos B , Animales , Ratones , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Diferenciación Celular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Células Madre Neoplásicas
18.
Mol Ther ; 19(4): 782-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21285961

RESUMEN

Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by gene transfer of reprogramming transcription factors. Expression levels of these factors strongly influence the overall efficacy to form iPSC colonies, but additional contribution of stochastic cell-intrinsic factors has been proposed. Here, we present engineered color-coded lentiviral vectors in which codon-optimized reprogramming factors are co-expressed by a strong retroviral promoter that is rapidly silenced in iPSC, and imaged the conversion of fibroblasts to iPSC. We combined fluorescence microscopy with long-term single cell tracking, and used live-cell imaging to analyze the emergence and composition of early iPSC clusters. Applying our engineered lentiviral vectors, we demonstrate that vector silencing typically occurs prior to or simultaneously with the induction of an Oct4-EGFP pluripotency marker. Around 7 days post-transduction (pt), a subfraction of cells in clonal colonies expressed Oct4-EGFP and rapidly expanded. Cell tracking of single cell-derived iPSC colonies supported the concept that stochastic epigenetic changes are necessary for reprogramming. We also found that iPSC colonies may emerge as a genetic mosaic originating from different clusters. Improved vector design with continuous cell tracking thus creates a powerful system to explore the subtle dynamics of biological processes such as early reprogramming events.


Asunto(s)
Reprogramación Celular/fisiología , Vectores Genéticos/genética , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Lentivirus/genética , Animales , Células Cultivadas , Reprogramación Celular/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Teratoma/metabolismo , Teratoma/patología
19.
Cells ; 11(24)2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552809

RESUMEN

Clonal heterogeneity in acute myeloid leukemia (AML) forms the basis for treatment failure and relapse. Attempts to decipher clonal evolution and clonal competition primarily depend on deep sequencing approaches. However, this prevents the experimental confirmation of the identified disease-relevant traits on the same cell material. Here, we describe the development and application of a complex fluorescent genetic barcoding (cFGB) lentiviral vector system for the labeling and subsequent multiplex tracking of up to 48 viable AML clones by flow cytometry. This approach allowed the visualization of longitudinal changes in the in vitro growth behavior of multiplexed color-coded AML clones for up to 137 days. Functional studies of flow cytometry-enriched clones documented their stably inherited increase in competitiveness, despite the absence of growth-promoting mutations in exome sequencing data. Transplantation of aliquots of a color-coded AML cell mix into mice revealed the initial engraftment of similar clones and their subsequent differential distribution in the animals over time. Targeted RNA-sequencing of paired pre-malignant and de novo expanded clones linked gene sets associated with Myc-targets, embryonic stem cells, and RAS signaling to the foundation of clonal expansion. These results demonstrate the potency of cFGB-mediated clonal tracking for the deconvolution of verifiable driver-mechanisms underlying clonal selection in leukemia.


Asunto(s)
Leucemia Mieloide Aguda , Animales , Ratones , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Células Clonales , Evolución Clonal/genética , Mutación/genética , Fenotipo
20.
J Virol ; 84(13): 6626-35, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20410274

RESUMEN

Accidental insertional activation of proto-oncogenes and potential vector mobilization pose serious challenges for human gene therapy using retroviral vectors. Comparative analyses of integration sites of different retroviral vectors have elucidated distinct target site preferences, highlighting vectors based on the alpharetrovirus Rous sarcoma virus (RSV) as those with the most neutral integration spectrum. To date, alpharetroviral vector systems are based mainly on single constructs containing viral coding sequences and intact long terminal repeats (LTR). Even though they are considered to be replication incompetent in mammalian cells, the transfer of intact viral genomes is unacceptable for clinical applications, due to the risk of vector mobilization and the potentially immunogenic expression of viral proteins, which we minimized by setting up a split-packaging system expressing the necessary viral proteins in trans. Moreover, intact LTRs containing transcriptional elements are capable of activating cellular genes. By removing most of these transcriptional elements, we were able to generate a self-inactivating (SIN) alpharetroviral vector, whose LTR transcriptional activity is strongly reduced and whose transgene expression can be driven by an internal promoter of choice. Codon optimization of the alpharetroviral Gag/Pol expression construct and further optimization steps allowed the production of high-titer self-inactivating vector particles in human cells. We demonstrate proof of principle for the versatility of alpharetroviral SIN vectors for the genetic modification of murine and human hematopoietic cells at a low multiplicity of infection.


Asunto(s)
Alpharetrovirus/fisiología , Terapia Genética/métodos , Vectores Genéticos , Secuencias Repetidas Terminales/genética , Transgenes , Ensamble de Virus , Alpharetrovirus/genética , Animales , Línea Celular , Células Cultivadas , Expresión Génica , Humanos , Ratones , Regiones Promotoras Genéticas , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA