Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Exp Eye Res ; 248: 110104, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303844

RESUMEN

Dysfunction of the extraorbital lacrimal gland (ELG) can lead to loss of vision due to damage to the epithelium of cornea. The broad-spectrum anti-epileptic drug sodium valproate (SV) has numerous side effects. Moringa oleifera (M.oleifera) is widely used as a food and in folk medicine. The effects of orally administered SV and M. oleifera hydroalcoholic leaf extract on rat ELG were investigated in this study by analysing both antioxidant and oxidant parameters. Additionally, boron level and tissue factor (TF) activity were determined. Protein changes were detected by sodium dodecyl sulfate gel electrophoresis (SDS-PAGE). Significantly lower values of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and total antioxidant status (TAS) were observed in the SV group compared to the control group. Treatment with Moringa extract significantly increased SOD, CAT and TAS values in the Moringa given SV group (SVM). While no significant differences were observed between the sialic acid values of the groups, lipid peroxidation (LPO), nitric oxide (NO) and total oxidant status (TOS) values were significantly elevated in the SV group compared to the control group. Due to the effect of Moringa extract, LPO, NO and TOS levels were significantly decreased in the SVM group compared to the SV group. TF activity was not meaningfully altered between groups. Compared to control rats, oxidative stress index (OSI) level significantly increased, whereas the boron level decreased in the SV group. Moringa extract treatment noticeably reduced OSI in the SVM group. According to SDS-PAGE, decreases in the density of protein bands with molecular weights of 51, 83, and 90 kDa were observed in SV given rats compared to the other groups. These decreases were reversed by the administration of Moringa extract. Moringa extract has shown protective properties arising from antioxidant potential, especially with its very low OSI value. Individuals undergoing SV treatment and having ELG complications might consider using Moringa extract to mitigate valproate induced damage.

2.
Chem Biodivers ; 21(5): e202301959, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38469951

RESUMEN

This study aimed to explore the potential protective impacts of Moringa oleifera extract on major alteration in salivary glands of rats exposed to sodium valproate (VA). Groups were defined as control, control+moringa extract, sodium valproate, and sodium valproate+moringa extract. Antioxidant and oxidant status, activities of digestive and metabolic enzymes were examined. VA treatment led to various biochemical changes in the salivary glands, including decreased levels of antioxidants like glutathione, glutathione-S-transferase, and superoxide dismutase (except for sublingual superoxide dismutase). Conversely, a decrease in alpha-amylase, alkaline and acid phosphatase, lactate dehydrogenase, protease, and maltase activities were observed. The study also demonstrated that VA induces oxidative stress, increases lipid peroxidation, sialic acid, and nitric oxide levels in the salivary glands. Total oxidant capacity was raised in all glands except in the sublingual gland. The electrophoretic patterns of proteins were similar. Moringa oleifera extract exhibited protective properties, reversing these VA-induced biochemical changes due to its antioxidant and therapeutic attributes. This research suggests that moringa extract might serve as an alternative treatment approach for individuals using VA and experiencing salivary gland issues, although further research is necessary to confirm these findings in human subjects.


Asunto(s)
Antioxidantes , Moringa oleifera , Extractos Vegetales , Glándulas Salivales , Ácido Valproico , Moringa oleifera/química , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Ratas , Glándulas Salivales/efectos de los fármacos , Glándulas Salivales/metabolismo , Ácido Valproico/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Peroxidación de Lípido/efectos de los fármacos
3.
Drug Chem Toxicol ; : 1-10, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984369

RESUMEN

Valproic acid is an antiepileptic drug associated with skin-related issues like excessive hair growth, hair loss, and skin rashes. In contrast, Moringa oleifera, rich in nutrients and antioxidants, is gaining popularity worldwide for its medicinal properties. The protective properties of M. oleifera extract against skin-related side effects caused by valproic acid were investigated. Female rats were divided into control groups and experimental groups such as moringa, sodium valproate, and sodium valproate + moringa groups. A 70% ethanolic extract of moringa (0.3 g/kg/day) was given to moringa groups, and a single dose of sodium valproate (0.5 g/kg/day) was given to valproate groups for 15 days. In the skin samples, antioxidant parameters (such as glutathione, glutathione-S-transferase, superoxide dismutase, catalase, and total antioxidant capacity), as well as oxidant parameters representing oxidative stress (i.e. lipid peroxidation, sialic acid, nitric oxide, reactive oxygen species, and total oxidant capacity), were examined. Additionally, boron, hydroxyproline, sodium-potassium ATPase, and tissue factor values were determined. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was also carried out for protein analysis in the skin samples. The results showed that moringa could increase glutathione, total antioxidant capacity, sodium-potassium ATPase, and boron levels, while decreasing lipid peroxidation, sialic acid, nitric oxide, total oxidant capacity, reactive oxygen species, hydroxyproline, and tissue factor levels. These findings imply that moringa possesses the potential to mitigate dermatological side effects.

4.
Drug Chem Toxicol ; 46(6): 1212-1222, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36373188

RESUMEN

Valproic acid (VPA) is a drug used for the treatment of epilepsy worldwide. Depending on usage, it can cause complications such as coagulopathies, hepatotoxicity, and encephalopathy. Moringa oleifera has been shown to have antitumor, anti-inflammatory, antiulcer, antispasmodic, diuretic, antihypertensive, antidiabetic, and hepatoprotective activities. The current study investigated the effects of Moringa leaves extract (70% ethanol) on antioxidant systems against valproate-induced oxidative damage in muscle tissues of rats. Female Sprague Dawley rats were randomly divided into four groups. Group I: control group; Group II: animals given only Moringa extract; Group III: animals that received only sodium valproate; Group IV: animals administered with sodium valproate + Moringa extract. Moringa extract and sodium valproate were administered orally. Muscle tissues were collected after sacrificing the animals. Biochemical analysis of muscle tissue homogenates of the valproate group revealed elevated levels/activities of lipid peroxidation, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, catalase, glutathione reductase, glutathione-S-transferase, reactive oxygen species, total oxidant status, oxidative stress index, glucose-6-phosphate dehydrogenase, sialic acid, protein carbonyl, nitric oxide, and myeloperoxidase. While glutathione, superoxide dismutase, glutathione peroxidase, total antioxidant status, aryl esterase and sodium/potassium ATPase were decreased. The administration of Moringa extract reversed these biochemical changes. These results indicate that Moringa leaves extract had a protective effect on muscle tissues against valproate-induced damage.


Asunto(s)
Antioxidantes , Moringa oleifera , Ratas , Femenino , Animales , Antioxidantes/metabolismo , Ácido Valproico/toxicidad , Ácido Valproico/metabolismo , Extractos Vegetales , Ratas Sprague-Dawley , Estrés Oxidativo , Glutatión/metabolismo , Músculos/metabolismo , Hojas de la Planta , Hígado
5.
J Med Food ; 27(6): 533-544, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38836511

RESUMEN

Valproic acid is an effective treatment for generalized seizure and related neurological defects. Despite its efficacy and acceptability, its use is associated with adverse drug effects. Moringa oleifera leaves are rich in phytochemical and nutritional components. It has excellent antioxidant and ethnobotanical benefits, thus popular among folk medicines and nutraceuticals. In the present study, 70% ethanol extract of moringa leaves was assessed for its in vivo biochemical and histological effects against valproate-induced kidney damage. Female Sprague-Dawley rats were randomly divided into four groups: Group I: control animals given physiological saline (n = 8); Group II: Moringa extract-administered group (0.3 g/kg b.w./day, n = 8); Group III: valproate-administered animals (0.5 g/kg b.w./day, n = 15); and Group IV: valproate + moringa extract (given similar doses of both valproate and moringa extract, n = 12) administered group. Treatments were administered orally for 15 days, the animals were fasted overnight, anesthetized, and then tissue samples harvested. In the valproate-administered experimental group, serum urea and uric acid were elevated. In the kidney tissue of the valproate rats, glutathione was depleted, antioxidant enzyme activities (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) disrupted, while oxidative stress biomarker, inflammatory proteins (Tumor necrosis factor-alpha and interleukin-6), histological damage scores, and the number of PCNA-positive cells were elevated. M. oleifera attenuated all these biochemical defects through its plethora of diverse antioxidant and therapeutic properties.


Asunto(s)
Antioxidantes , Riñón , Moringa oleifera , Estrés Oxidativo , Extractos Vegetales , Ratas Sprague-Dawley , Ácido Valproico , Animales , Moringa oleifera/química , Ácido Valproico/efectos adversos , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Femenino , Ratas , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Superóxido Dismutasa/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Hojas de la Planta/química , Glutatión/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo
6.
J Food Biochem ; 45(1): e13590, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33346923

RESUMEN

Diabetes is a metabolic disorder whose complications are among the leading cause of death. In this study, the antidiabetic effect of L-alanine was tested in alloxan-induced diabetic rats. Thirty-five male albino Wistar rats were divided into five groups viz; Group I and II: nondiabetic and diabetic controls respectively; Group III and IV: 150 and 300 mg/kg b.w. L-alanine treated, respectively; Group V: glibenclamide (0.5 mg/kg b.w.) treated. Weight and blood glucose were monitored during the study, while liver and kidney functions, lipid profile, and antioxidant markers were examined at the end of the study. The outcomes indicate that 300 mg/kg L-alanine resulted to a significant decrease (p < .05) in weight and blood glucose. L-alanine restored tissue antioxidants, kidney, and liver functions by improving important parameters. Histopathological studies showed the potential of L-alanine in regeneration of the islets of Langerhans. These findings suggest that L-alanine has an alleviating effect on alloxan-induced diabetes. PRACTICAL APPLICATIONS: Several medicinal plants have been tested for their antidiabetic potentials, however, the isolation of the active compounds from these plants for medicinal use is often challenging. Here, we present data that suggests the potential use of a pure and harmless amino acid compound (L-alanine) for the management of diabetes. L-alanine is readily available, cheap and can also be found in many foods we eat. Therefore, L-alanine may be taken by diabetic patients as a food supplement for the treatment/management of diabetes or taken as part of foods rich in the amino acid such as meat, poultry, fish, eggs, and dairy products.


Asunto(s)
Aloxano , Diabetes Mellitus Experimental , Alanina/farmacología , Alanina/uso terapéutico , Animales , Glucemia , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Suplementos Dietéticos , Humanos , Masculino , Extractos Vegetales , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA