Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(33): 18329-18339, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37608781

RESUMEN

We have approached the synthesis of colloidal InAs nanocrystals (NCs) using amino-As and ligands that are different from the commonly employed oleylamine (OA). We found that carboxylic and phosphonic acids led only to oxides, whereas tri-n-octylphosphine, dioctylamine, or trioctylamine (TOA), when employed as the sole ligands, yielded InAs NCs with irregular sizes and a broad size distribution. Instead, various combinations of TOA and OA delivered InAs NCs with good control over the size distribution, and the TOA:OA volume ratio of 4:1 generated InAs tetrapods with arm length of 5-6 nm. Contrary to tetrapods of II-VI materials, which have a zinc-blende core and wurtzite arms, these NCs are entirely zinc-blende, with arms growing along the ⟨111⟩ directions. They feature a narrow excitonic peak at ∼950 nm in absorption and a weak photoluminescence emission at 1050 nm. Our calculations indicated that the bandgap of the InAs tetrapods is mainly governed by the size of their core and not by their arm lengths when these are longer than ∼3 nm. Nuclear magnetic resonance analyses revealed that InAs tetrapods are mostly passivated by OA with only a minor fraction of TOA. Molecular dynamics simulations showed that OA strongly binds to the (111) facets whereas TOA weakly binds to the edges and corners of the NCs and their combined use (at high TOA:OA volume ratios) promotes growth along the ⟨111⟩ directions, eventually forming tetrapods. Our work highlights the use of mixtures of ligands as a means of improving control over InAs NCs size and size distribution.

2.
Chemistry ; 28(37): e202200693, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35474351

RESUMEN

Self-assembly of biomolecules such as peptides, nucleic acids or their analogues affords supramolecular objects, exhibiting structures and physical properties dependent on the amino-acid or nucleobase composition. Conjugation of the peptide diphenylalanine (FF) to peptide nucleic acids triggers formation of self-assembled structures, mainly stabilized by interactions between FF. In this work we report formation of homogeneous chiral fibers upon self-assembly of the hybrid composed of the tetraphenylalanine peptide (4F) conjugated to the PNA dimer adenine-thymine (at). In this case nucleobases seem to play a key role in determining the morphology and chirality of the fibers. When the PNA "at" is replaced by guanine-cytosine dimer "gc", disordered structures are observed. Spectroscopic characterization of the self-assembled hybrids, along with AFM and SEM studies is reported. Finally, a structural model consistent with the experimental evidence has also been obtained, showing how the building blocks of 4Fat arrange to give helical fibers.


Asunto(s)
Nanoestructuras , Ácidos Nucleicos de Péptidos , Nanoestructuras/química , Ácidos Nucleicos de Péptidos/química , Péptidos/química , Fenilalanina/química , Polímeros , Timina
3.
Molecules ; 27(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296595

RESUMEN

The research for alternative administration methods for anticancer drugs, towards enhanced effectiveness and selectivity, represents a major challenge for the scientific community. In the last decade, polymeric nanostructured delivery systems represented a promising alternative to conventional drug administration since they ensure secure transport to the selected target, providing active compounds protection against elimination, while minimizing drug toxicity to non-target cells. In the present research, poly(glycerol sebacate), a biocompatible polymer, was synthesized and then nanostructured to allow curcumin encapsulation, a naturally occurring polyphenolic phytochemical isolated from the powdered rhizome of Curcuma longa L. Curcumin was selected as an anticancer agent in virtue of its strong chemotherapeutic activity against different cancer types combined with good cytocompatibility within healthy cells. Despite its strong and fascinating biological activity, its possible exploitation as a novel chemotherapeutic has been hampered by its low water solubility, which results in poor absorption and low bioavailability upon oral administration. Hence, its encapsulation within nanoparticles may overcome such issues. Nanoparticles obtained through nanoprecipitation, an easy and scalable technique, were characterized in terms of size and stability over time using dynamic light scattering and transmission electron microscopy, confirming their nanosized dimensions and spherical shape. Finally, biological investigation demonstrated an enhanced cytotoxic effect of curcumin-loaded PGS-NPs on human cervical cancer cells compared to free curcumin.


Asunto(s)
Antineoplásicos , Curcumina , Nanopartículas , Humanos , Curcumina/química , Línea Celular Tumoral , Nanopartículas/química , Polímeros/química , Antineoplásicos/química , Agua , Tamaño de la Partícula , Portadores de Fármacos/química
4.
Langmuir ; 37(38): 11365-11373, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34533956

RESUMEN

Colloidal gold nanoparticles (GNPs) have found wide-ranging applications in nanomedicine due to their unique optical properties, ease of preparation, and functionalization. To avoid the formation of GNP aggregates in the physiological environment, molecules such as lipids, polysaccharides, or polymers are employed as GNP coatings. Here, we present the colloidal stabilization of GNPs using ultrashort α,ß-peptides containing the repeating unit of a diaryl ß2,3-amino acid and characterized by an extended conformation. Differently functionalized GNPs have been characterized by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis, allowing us to define the best candidate that inhibits the aggregation of GNPs not only in water but also in mouse serum. In particular, a short tripeptide was found to be able to stabilize GNPs in physiological media over 3 months. This new system has been further capped with albumin, obtaining a material with even more colloidal stability and ability to prevent the formation of a thick protein corona in physiological media.


Asunto(s)
Oro , Nanopartículas del Metal , Animales , Dispersión Dinámica de Luz , Ratones , Microscopía Electrónica de Transmisión , Péptidos
5.
Molecules ; 27(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35011405

RESUMEN

A linear polyamidoamine (PAA) named BAC-EDDS, containing metal chelating repeat units composed of two tert-amines and four carboxylic groups, has been prepared by the aza-Michael polyaddition of ethylendiaminodisuccinic (EDDS) with 2,2-bis(acrylamido)acetic acid (BAC). It was characterized by size exclusion chromatography (SEC), FTIR, UV-Vis and NMR spectroscopies. The pKa values of the ionizable groups of the repeat unit were estimated by potentiometric titration, using a purposely synthesized molecular ligand (Agly-EDDS) mimicking the structure of the BAC-EDDS repeat unit. Dynamic light scattering (DLS) and ζ-potential analyses revealed the propensity of BAC-EDDS to form stable nanoaggregates with a diameter of approximately 150 nm at pH 5 and a net negative charge at physiological pH, in line with an isoelectric point <2. BAC-EDDS stably chelated Gd (III) ions with a molar ratio of 0.5:1 Gd (III)/repeat unit. The stability constant of the molecular model Gd-Agly-EDDS (log K = 17.43) was determined as well, by simulating the potentiometric titration through the use of Hyperquad software. In order to comprehend the efficiency of Gd-BAC-EDDS in contrasting magnetic resonance images, the nuclear longitudinal (r1) and transverse (r2) relaxivities as a function of the externally applied static magnetic field were investigated and compared to the ones of commercial contrast agents. Furthermore, a model derived from the Solomon-Bloembergen-Morgan theory for the field dependence of the NMR relaxivity curves was applied and allowed us to evaluate the rotational correlation time of the complex (τ = 0.66 ns). This relatively high value is due to the dimensions of Gd-BAC-EDDS, and the associated rotational motion causes a peak in the longitudinal relaxivity at ca. 75 MHz, which is close to the frequencies used in clinics. The good performances of Gd-BAC-EDDS as a contrast agent were also confirmed through in vitro magnetic resonance imaging experiments with a 0.2 T magnetic field.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Imagen por Resonancia Magnética , Poliaminas/química , Quelantes/química , Técnicas de Química Sintética , Ligandos , Imagen por Resonancia Magnética/métodos , Estructura Molecular , Nanopartículas , Fenoles/química , Poliaminas/síntesis química , Sulfóxidos/química , Termodinámica
6.
Inorg Chem ; 59(17): 12086-12096, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32805986

RESUMEN

We present for the first time a method for the preparation of magnetic halloysite nanotubes (HNT) by loading of preformed superparamagnetic magnetite nanoparticles (SPION) of diameter size ∼6 nm with a hydrodynamic diameter of ∼10 nm into HNT. We found that the most effective route to reach this goal relies on the modification of the inner lumen of HNT by tetradecylphosphonic acid (TDP) to give HNT-TDP, followed by the loading with preformed oleic acid (OA)-stabilized SPION. Transmission electron microscopy evidenced the presence of highly crystalline magnetic nanoparticles only in the lumen, partially ordered in chainlike structures. Conversely, attempts to obtain the same result by exploiting either the positive charge of the HNT inner lumen employing SPIONs covered with negatively charged capping agents or the in situ synthesis of SPION by thermal decomposition were not effective. HNT-TDP were characterized by infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), and ζ-potential, and all of the techniques confirmed the presence of TDP onto the HNT. Moreover, the inner localization of TDP was ascertained by the use of Nile Red, a molecule whose luminescence is very sensitive to the polarity of the environment. The free SPION@OA (as a colloidal suspension and as a powder) and SPION-in-HNT powder were magnetically characterized by measuring the ZFC-FC magnetization curves as well as the hysteresis cycles at 300 and 2.5 K, confirming that the super-paramagnetic behavior and the main magnetic properties of the free SPION were preserved once embedded in SPION-in-HNT.

7.
Environ Res ; 188: 109778, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32574852

RESUMEN

It is known that, for marine coastal ecosystems, pollution and global warming are among the most threatening factors. Among emerging pollutants, nanoparticles (NPs) deserve particular attention as their possible adverse effects are significantly influenced by environmental factors such as salinity, pH and temperature, as well as by their ability to interact with other contaminants. In this framework, the present study aimed to evaluate the potential interactions between CeO2 NPs and the toxic classic metal mercury (Hg), under current and warming conditions. The marine bivalve Mytilus galloprovincialis was used as biological model and exposed to CeO2 NPs and Hg, either alone or in combination, for 28 day at 17 °C and 22 °C. A suite of biomarkers related to energetic metabolism, oxidative stress/damage, redox balance, and neurotoxicity was applied in exposed and non-exposed (control) mussels. The Hg and Ce accumulation was also assessed. Results showed that the exposure to CeO2 NPs alone did not induce toxic effects in M. galloprovincialis. On the contrary, Hg exposure determined a significant loss of energetic metabolism and a general impairment in biochemical performances. Hg accumulation in mussels was not modified by the presence of CeO2 NPs, while the biochemical alterations induced by Hg alone were partially canceled upon co-exposure with CeO2 NPs. The temperature increase induced loss of metabolic and biochemical functions and the effects of temperature prevailed on mussels exposed to pollutants acting alone or combined.


Asunto(s)
Cerio , Mercurio , Mytilus , Nanopartículas , Contaminantes Químicos del Agua , Animales , Cerio/toxicidad , Ecosistema , Mercurio/toxicidad , Nanopartículas/toxicidad , Temperatura , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
8.
Inorg Chem ; 58(21): 14586-14599, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31618015

RESUMEN

In this work, we report the synthesis of [Ru(phen)32+]-based complexes and their use as photosensitizers for photodynamic therapy (PDT), a treatment of pathological conditions based on the photoactivation of bioactive compounds, which are not harmful in the absence of light irradiation. Of these complexes, Ru-PhenISA and Ru-PhenAN are polymer conjugates containing less than 5%, (on a molar basis), photoactive units. Their performance is compared with that of a small [Ru(phen)32+] compound, [Ru(phen)2BAP](OTf)2 (BAP = 4-(4'-aminobutyl)-1,10-phenanthroline, OTf = triflate anion), used as a model of the photoactive units. The polymer ligands, PhenISA and PhenAN, are polyamidoamines with different acid-base properties. At physiological pH, the former is zwitterionic, the latter moderately cationic, and both intrinsically cytocompatible. The photophysical characterizations show that the complexation to macromolecules does not hamper the Ru(phen)32+ ability to generate toxic singlet oxygen upon irradiation, and phosphorescence lifetimes and quantum yields are similar in all cases. All three compounds are internalized by HeLa cells and can induce cell death upon visible light irradiation. However, their relative PDT efficiency is different: the zwitterionic PhenISA endowed with the Ru-complex lowers the PDT efficiency of the free complex, while conversely, the cationic PhenAN boosts it. Flow cytometry demonstrates that the uptake efficiency of the three agents reflects the observed differences in PDT efficacy. Additionally, intracellular localization studies show that while [Ru(phen)2BAP](OTf)2 remains confined in vesicular structures, Ru-PhenISA localization is hard to determine due to the very low uptake efficiency. Very interestingly, instead, the cationic Ru-PhenAN accumulates inside the nucleus in all treated cells. Overall, the results indicate that the complexation of [Ru(phen)2BAP](OTf)2 with a cationic polyamidoamine to give the Ru-PhenAN complex is an excellent strategy to increase the Ru-complex cell uptake and, additionally, to achieve accumulation at the nuclear level. These unique features together make this compound an excellent photosensitizer with very high PDT efficiency.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Fotoquimioterapia , Poliaminas/farmacología , Rutenio/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Estructura Molecular , Tamaño de la Partícula , Poliaminas/química , Rutenio/química , Células Tumorales Cultivadas
9.
Proc Natl Acad Sci U S A ; 113(41): E6219-E6227, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671648

RESUMEN

Cells in the tumor microenvironment may be reprogrammed by tumor-derived metabolites. Cholesterol-oxidized products, namely oxysterols, have been shown to favor tumor growth directly by promoting tumor cell growth and indirectly by dampening antitumor immune responses. However, the cellular and molecular mechanisms governing oxysterol generation within tumor microenvironments remain elusive. We recently showed that tumor-derived oxysterols recruit neutrophils endowed with protumoral activities, such as neoangiogenesis. Here, we show that hypoxia inducible factor-1a (HIF-1α) controls the overexpression of the enzyme Cyp46a1, which generates the oxysterol 24-hydroxycholesterol (24S-HC) in a pancreatic neuroendocrine tumor (pNET) model commonly used to study neoangiogenesis. The activation of the HIF-1α-24S-HC axis ultimately leads to the induction of the angiogenic switch through the positioning of proangiogenic neutrophils in proximity to Cyp46a1+ islets. Pharmacologic blockade or genetic inactivation of oxysterols controls pNET tumorigenesis by dampening the 24S-HC-neutrophil axis. Finally, we show that in some human pNET samples Cyp46a1 transcripts are overexpressed, which correlate with the HIF-1α target VEGF and with tumor diameter. This study reveals a layer in the angiogenic switch of pNETs and identifies a therapeutic target for pNET patients.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Hidroxicolesteroles/metabolismo , Tumores Neuroendocrinos/etiología , Tumores Neuroendocrinos/metabolismo , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo , Animales , Transformación Celular Neoplásica/genética , Colestanotriol 26-Monooxigenasa/genética , Colestanotriol 26-Monooxigenasa/metabolismo , Colesterol 24-Hidroxilasa , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Activación Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Neovascularización Patológica/genética , Tumores Neuroendocrinos/patología , Neoplasias Pancreáticas/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
J Am Chem Soc ; 140(44): 14878-14886, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30358392

RESUMEN

We report an amine-free synthesis of lead halide perovskite (LHP) nanocrystals, using trioctylphosphine oxide (TOPO) instead of aliphatic amines, in combination with a protic acid (e.g., oleic acid). The overall synthesis scheme bears many similarities to the chemistry behind the preparation of LHP thin films and single crystals, in terms of ligand coordination to the chemical precursors. The acidity of the environment and hence the extent of protonation of the TOPO molecules tune the reactivity of the PbX2 precursor, regulating the size of the nanocrystals. On the other hand, TOPO molecules are virtually absent from the surface of our nanocrystals, which are simply passivated by one type of ligand (e.g., Cs-oleate). Furthermore, our studies reveal that Cs-oleate is dynamically bound to the surface of the nanocrystals and that an optimal surface coverage is critical for achieving high photoluminescence quantum yield. Our scheme delivers NCs with a controlled size and shape: only cubes are formed, with no contamination with platelets, regardless of the reaction conditions that were tested. We attribute such a shape homogeneity to the absence of primary aliphatic amines in our reaction environment, since these are known to promote the formation of nanocrystals with sheet/platelet morphologies or layered phases under certain reaction conditions. The TOPO route is particularly appealing with regard to synthesizing LHP nanocrystals for large-scale manufacturing, as the yield in terms of material produced is close to the theoretical limit: i.e., almost all precursors employed in the synthesis are converted into nanocrystals.

11.
Nanotechnology ; 29(5): 055704, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29176062

RESUMEN

The role of substrate topography in phenotype expression of in vitro cultured cells has been widely assessed. However, the production of the nanostructured interface via the deposition of sol-gel synthesized nanoparticles (NPs) has not yet been fully exploited. This is also evidenced by the limited number of studies correlating the morphological, structural and chemical properties of the grown thin films with those of the sol-gel 'brick' within the framework of the bottom-up approach. Our work intends to go beyond this drawback presenting an accurate investigation of sol-gel TiO2 NPs shaped as spheres and rods. They have been fully characterized by complementary analytical techniques both suspended in apolar solvents, by dynamic light scattering (DLS) and nuclear magnetic resonance (NMR) and after deposition on substrates (solid state configuration) by transmission electron microscopy (TEM) and powder x-ray diffraction (PXRD). In the case of suspended anisotropic rods, the experimental DLS data, analyzed by the Tirado-Garcia de la Torre model, present the following ranges of dimensions: 4-5 nm diameter (∅) and 11-15 nm length (L). These results are in good agreement with that obtained by the two solid state techniques, namely 3.8(9) nm ∅ and 13.8(2.5) nm L from TEM and 5.6(1) ∅ and 13.3(1) nm L from PXRD data. To prove the suitability of the supported sol-gel NPs for biological issues, spheres and rods have been separately deposited on coverslips. The cell response has been ascertained by evaluating the adhesion of the epithelial cell line Madin-Darby canine kidney. The cellular analysis showed that titania films promote cell adhesion as well clustering organization, which is a distinguishing feature of this type of cell line. Thus, the use of nanostructured substrates via sol-gel could be considered a good candidate for cell culture with the further advantages of likely scalability and interfaceability with many different materials usable as supports.


Asunto(s)
Coloides/química , Nanoestructuras/química , Transición de Fase , Titanio/química , Animales , Proliferación Celular , Perros , Células de Riñón Canino Madin Darby , Nanosferas/química , Nanosferas/ultraestructura , Nanoestructuras/ultraestructura , Nanotubos/química , Nanotubos/ultraestructura , Ácido Oléico/química , Tamaño de la Partícula , Espectroscopía de Protones por Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química
12.
Cancer Immunol Immunother ; 65(1): 111-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26646851

RESUMEN

Targeting the tumor microenvironment focusing on immune cells has recently become a standard of care for some tumors. Indeed, antibodies blocking immune checkpoints (e.g., anti-CTLA-4 and anti-PD1 mAbs) have been approved by regulatory agencies for the treatment of some solid tumors based upon successes in many clinical trials. Although tumor metabolism has always attracted the attention of tumor biologists, only recently have oncologists renewed their interest in this field of tumor biology research. This has highlighted the possibility to pharmacologically target rate-limiting enzymes along key metabolic pathways of tumor cells, such as lipogenesis and aerobic glycolysis. Altered tumor metabolism has also been shown to influence the functionality of the tumor microenvironment as a whole, particularly the immune cell component of thereof. Cholesterol, oxysterols and Liver X receptors (LXRs) have been investigated in different tumor models. Recent in vitro and in vivo results point to their involvement in tumor and immune cell biology, thus making the LXR/oxysterol axis a possible target for novel antitumor strategies. Indeed, the possibility to target both tumor cell metabolism (i.e., cholesterol metabolism) and tumor-infiltrating immune cell dysfunctions induced by oxysterols might result in a synergistic antitumor effect generating long-lasting memory responses. This review will focus on the role of cholesterol metabolism with particular emphasis on the role of the LXR/oxysterol axis in the tumor microenvironment, discussing mechanisms of action, pros and cons, and strategies to develop antitumor therapies based on the modulation of this axis.


Asunto(s)
Colesterol/inmunología , Humanos , Microambiente Tumoral
13.
Cancer Immunol Immunother ; 65(11): 1303-1315, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27520505

RESUMEN

Tumor-derived metabolites dampen tumor-infiltrating immune cells and antitumor immune responses. Among the various metabolites produced by tumors, we recently showed that cholesterol oxidized products, namely oxysterols, favor tumor growth through the inhibition of DC migration toward lymphoid organs and by promoting the recruitment of pro-tumor neutrophils within the tumor microenvironment. Here, we tested different drugs capable of blocking cholesterol/oxysterol formation. In particular, we tested efficacy and safety of different administration schedules, and of immunotherapy-based combination of a class of compounds, namely zaragozic acids, which inhibit cholesterol pathway downstream of mevalonate formation, thus leaving intact the formation of the isoprenoids, which are required for the maturation of proteins involved in the immune cell function. We show that zaragozic acids inhibit the in vivo growth of the RMA lymphoma and the Lewis lung carcinoma (LLC) without inducing side effects. Tumor growth inhibition requires an intact immune system, as immunodeficient tumor-bearing mice do not respond to zaragozic acid treatment. Of note, the effect of zaragozic acids is accompanied by a marked reduction in the LXR target genes Abcg1, Mertk, Scd1 and Srebp-1c in the tumor microenvironment. On the other hand, zoledronate, which blocks also isoprenoid formation, did not control the LLC tumor growth. Finally, we show that zaragozic acids potentiate the antitumor effects of active and adoptive immunotherapy, significantly prolonging the overall survival of tumor-bearing mice treated with the combo zaragozic acids and TAA-loaded DCs. This study identifies zaragozic acids as new antitumor compounds exploitable for the treatment of cancer patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Carcinoma Pulmonar de Lewis/terapia , Células Dendríticas/inmunología , Inmunoterapia Adoptiva/métodos , Linfoma de Células T/terapia , Ácidos Tricarboxílicos/uso terapéutico , Animales , Carcinoma Pulmonar de Lewis/inmunología , Colesterol/metabolismo , Terapia Combinada , Células Dendríticas/trasplante , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Linfoma de Células T/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Oxiesteroles/metabolismo , Escape del Tumor , Microambiente Tumoral
14.
Langmuir ; 31(26): 7381-90, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26057696

RESUMEN

Nanoparticles (NPs) have received much attention in recent years for their diverse potential biomedical applications. However, the synthesis of NPs with desired biodistribution and pharmacokinetics is still a major challenge, with NP size and surface chemistry being the main factors determining the behavior of NPs in vivo. Here we report on the surface chemistry and in vitro cellular uptake of magnetic iron oxide NPs coated with zwitterionic dopamine sulfonate (ZDS). ZDS-coated NPs were compared to similar iron oxide NPs coated with PEG-like 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (MEEA) to investigate how surface chemistry affects their in vitro behavior. ZDS-coated NPs had a very dense coating, guaranteeing high colloidal stability in several aqueous media and negligible interaction with proteins. Treatment of HepG2 cells with increasing doses (2.5-100 µg Fe/mL) of ZDS-coated iron oxide NPs had no effect on cell viability and resulted in a low, dose-dependent NP uptake, inferior than most reported data for the internalization of iron oxide NPs by HepG2 cells. MEEA-coated NPs were scarcely stable and formed micrometer-sized aggregates in aqueous media. They decreased cell viability for dose ≥50 µg Fe/mL, and were more efficiently internalized than ZDS-coated NPs. In conclusion, our data indicate that the ZDS layer prevented both aggregation and sedimentation of iron oxide NPs and formed a biocompatible coating that did not display any biocorona effect. The very low cellular uptake of ZDS-coated iron NPs can be useful to achieve highly selective targeting upon specific functionalization.


Asunto(s)
Carcinoma Hepatocelular/patología , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Espacio Intracelular/metabolismo , Neoplasias Hepáticas/patología , Nanopartículas , Transporte Biológico , Estabilidad de Medicamentos , Éteres de Etila/química , Compuestos Férricos/toxicidad , Células Hep G2 , Humanos , Ácidos Sulfónicos/química , Propiedades de Superficie
15.
Inorg Chem ; 54(2): 544-53, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25554822

RESUMEN

A polymer complex (1P) was synthesized by binding bis(cyclometalated) Ir(ppy)2(+) fragments (ppy = 2-phenylpyridyl) to phenanthroline (phen) pendants of a poly(amidoamine) copolymer (PhenISA, in which the phen pendants involved ∼6% of the repeating units). The corresponding molecular complex [Ir(ppy)2(bap)](+) (1M, bap = 4-(butyl-4-amino)-1,10-phenanthroline) was also prepared for comparison. In water solution 1P gives nanoaggregates with a hydrodynamic diameter of 30 nm in which the lipophilic metal centers are presumed to be segregated within polymer tasks to reduce their interaction with water. Such confinement, combined with the dilution of triplet emitters along the polymer chains, led to 1P having a photoluminescence quantum yield greater than that of 1M (0.061 vs 0.034, respectively, in an aerated water solution) with a longer lifetime of the (3)MLCT excited states and a blue-shifted emission (595 nm vs 604 nm, respectively). NMR data supported segregation of the metal centers. Photoreaction of O2 with 1,5-dihydroxynaphthalene showed that 1P is able to sensitize (1)O2 generation but with half the quantum yield of 1M. Cellular uptake experiments showed that both 1M and 1P are efficient cell staining agents endowed with two-photon excitation (TPE) imaging capability. TPE microscopy at 840 nm indicated that both complexes penetrate the cellular membrane of HeLa cells, localizing in the perinuclear region. Cellular photodynamic therapy tests showed that both 1M and 1P are able to induce cell apoptosis upon exposure to Xe lamp irradiation. The fraction of apoptotic cells for 1M was higher than that for 1P (74 and 38%, respectively) 6 h after being irradiated for 5 min, but cells incubated with 1P showed much lower levels of necrosis as well as lower toxicity in the absence of irradiation. More generally, the results indicate that cell damage induced by 1M was avoided by binding the iridium sensitizers to the poly(amidoamine).


Asunto(s)
Iridio/química , Sustancias Luminiscentes/química , Compuestos Organometálicos/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Poliaminas/química , Oxígeno Singlete/química , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Estabilidad de Medicamentos , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Sustancias Luminiscentes/farmacología , Naftoles/química , Compuestos Organometálicos/farmacología , Oxidación-Reducción , Procesos Fotoquímicos , Fármacos Fotosensibilizantes/farmacología
16.
Nano Lett ; 13(5): 2004-10, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23611425

RESUMEN

We developed an all-optical method to measure the temperature on gold (nanorods and nanostars) and magnetite nanoparticles under near-infrared and radiofrequency excitation by monitoring the excited state lifetime of Rhodamine B that lies within =/~20 nm from the nanoparticle surface. We reached high temperature sensitivity (0.029 ± 0.001 ns/°C) and low uncertainty (±0.3 °C). Gold nanostars are =/~3 and =/~100 times more efficient than gold nanorods and magnetite nanoparticles in inducing localized hyperthermia.


Asunto(s)
Oro/química , Nanopartículas de Magnetita/química , Nanopartículas del Metal/química , Temperatura , Fenómenos Ópticos , Tamaño de la Partícula , Propiedades de Superficie
17.
Int J Cancer ; 132(11): 2557-66, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23151995

RESUMEN

Cancer vaccines have recently been shown to induce some clinical benefits. The relationship between clinical activity and anti-vaccine T cell responses is somewhat controversial. Indeed, in many trials it has been documented that the induction of vaccine-specific T cells exceeds the clinical responses observed. Here, we evaluate immunological and clinical responses in 23 MAGE-A3(+) melanoma patients treated with autologous lymphocytes genetically engineered to express the tumor antigen MAGE-A3 and the viral gene product thymidine kinase of the herpes simplex virus (HSV-TK). HSV-TK was used as safety system in case of adverse events and as tracer antigen to monitor the immune competence of treated patients. The increase of anti-TK and anti-MAGE-A3 T-cells after vaccination was observed in 90 and 27% of patients, respectively. Among 19 patients with measurable disease, we observed a disease control rate of 26.3%, with one objective clinical response, and four durable, stable diseases. Three patients out of five with no evidence of disease (NED) at the time of vaccination remained NED after 73+, 70+ and 50+ months. Notably, we report that only patients experiencing MAGE-A3-specific immune responses showed a clinical benefit. Additionally, we report that responder and non-responder patients activate and expand T cells against the tracer antigen TK in a similar way, suggesting that local rather than systemic immune suppression might be involved in limiting clinically relevant antitumor immune responses.


Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/uso terapéutico , Terapia Genética , Melanoma/inmunología , Proteínas de Neoplasias/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Neoplasias Óseas/inmunología , Neoplasias Óseas/mortalidad , Neoplasias Óseas/terapia , Ensayos Clínicos Fase II como Asunto , Femenino , Estudios de Seguimiento , Humanos , Hipersensibilidad Tardía , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/terapia , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/terapia , Masculino , Melanoma/mortalidad , Melanoma/terapia , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/terapia , Linfocitos T/metabolismo , Timidina Quinasa/inmunología , Timidina Quinasa/metabolismo
18.
Cell Death Dis ; 14(2): 129, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792589

RESUMEN

Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.


Asunto(s)
Melanoma , Monocitos , Ratones , Animales , Monocitos/metabolismo , Diferenciación Celular , Colesterol/metabolismo , Presentación de Antígeno , Células Dendríticas/metabolismo , Microambiente Tumoral
19.
Epilepsia ; 53(11): 1907-16, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23030308

RESUMEN

PURPOSE: Long-lasting activation of glia occurs in brain during epileptogenesis, which develops after various central nervous system (CNS) injuries. Glia is the cell source of the biosynthesis and release of molecules that play a role in seizure recurrence and may contribute to epileptogenesis, thus representing a putative biomarker of epilepsy development and severity. In this study, we set up an in vivo longitudinal study using (1) H-magnetic resonance spectroscopy (MRS) to measure metabolite content in the rat hippocampus that could reflect the extent and the duration of glia activation. Our aim was to explore if glia activation during epileptogenesis, or in the chronic epileptic phase, can be used as a biomarker of tissue epileptogenicity (i.e., a measure of epilepsy severity). METHODS: (1) H-MRS measurements were done in the adult rat hippocampus every 24 h for 7 days after status epilepticus (SE) and in chronic epileptic rats, using a 7 T Bruker Biospec MRI (magnetic resonance imaging)/MRS scanner. We studied changes in metabolite levels that reflect astrocytes (myo-inositol, mIns; glutathione, GSH), microglia/macrophage activation and the associated neuronal cell injury/dysfunction (lactate, Lac; N-acetyl-aspartate, NAA). (1) H-MRS results were validated by post hoc immunohistochemistry using cell-specific markers. Data analysis was done to determine whether correlations exist between the metabolite changes and spontaneous seizure frequency or the extent of neuronal cell loss. KEY FINDINGS: The analysis of (1) H-MRS spectra showed a progressive increase in mIns and GSH levels after SE, which was maintained in epileptic rats. Lac signal transiently increased during epileptogenesis being undetectable in chronic epileptic tissue. NAA levels were chronically reduced from day 2 post-SE. Immunohistochemistry confirmed the activation of microglia and astrocytes and the progressive neuronal cell loss. GSH levels during epileptogenesis showed a negative correlation with the frequency of spontaneous seizures, whereas S100ß levels in epileptic tissue were positively correlated with this outcome measure. A negative correlation was also found between GSH or mIns levels during epileptogenesis and the extent of neurodegeneration in hippocampus of epileptic rats. SIGNIFICANCE: (1) H-MRS is a valuable in vivo technique for determining the extent and temporal profile of glia activation after an epileptogenic injury. S100ß levels measured in the epileptic tissue may represent a biomarker of seizure frequency, whereas GSH levels during epileptogenesis could serve as a predictive marker of seizure frequency. Both mIns and GSH levels measured before the onset of spontaneous seizures predict the extent of neuronal cell loss in epileptic tissue. These findings highlight the potential of serial (1) H-MRS analysis for searching epilepsy biomarkers for prognostic, diagnostic, or therapeutic purposes.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/metabolismo , Hipocampo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Neuroglía/metabolismo , Animales , Biomarcadores/metabolismo , Epilepsia/patología , Hipocampo/patología , Masculino , Neuroglía/patología , Protones , Ratas , Ratas Sprague-Dawley
20.
Inorg Chem ; 51(5): 2966-75, 2012 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-22360569

RESUMEN

A series of [Re(2)(µ-ER)(2)(CO)(6)(µ-pydz)] complexes have been synthesized (E = S, R = C(6)H(5), 2; E = O, R = C(6)F(5), 3; C(6)H(5), 4; CH(3), and 5; H, 6), starting either from [Re(CO)(5)O(3)SCF(3)] (for 2 and 4), [Re(2)(µ-OR)(3)(CO)(6)](-) (for 3 and 5), or [Re(4)(µ(3)-OH)(4)(CO)(12)] (for 6). Single-crystal diffractometric analysis showed that the two µ-phenolato derivatives (3 and 4) possess an idealized C(2) symmetry, while the µ-benzenethiolato derivative (2) is asymmetrical, because of the different conformation adopted by the phenyl groups. A combined density functional and time-dependent density functional study of the geometry and electronic structure of the complexes showed that the lowest unoccupied molecular orbital (LUMO) and LUMO+1 are the two lowest-lying π* orbitals of pyridazine, whereas the highest occupied molecular orbitals (HOMOs) are mainly constituted by the "t(2g)" set of the Re atoms, with a strong Re-(µ-E) π* character. The absorption spectra have been satisfactorily simulated, by computing the lowest singlet excitation energies. All the complexes exhibit one reversible monoelectronic reduction centered on the pyridazine ligand (ranging from -1.35 V to -1.53 V vs Fc(+)|Fc). The benzenethiolato derivative 2 exhibits one reversible two-electron oxidation (at 0.47 V), whereas the OR derivatives show two close monoelectronic oxidation peaks (ranging from 0.85 V to 1.35 V for the first peak). The thioderivative 2 exhibits a very small electrochemical energy gap (1.9 eV, vs 2.38-2.70 eV for the OR derivatives), and it does not show any photoluminescence. The complexes containing OR ligands show from moderate to poor photoluminescence, in the range of 608-708 nm, with quantum yields decreasing (ranging from 5.5% to 0.07%) and lifetimes decreasing (ranging from 550 ns to 9 ns) (3 > 4 > 6 ≈ 5) with increasing emission wavelength. The best emitting properties, which are closely comparable to those of the dichloro complex (1), are exhibited by the pentafluorophenolato derivative (3).


Asunto(s)
Complejos de Coordinación/química , Sustancias Luminiscentes/química , Piridazinas/química , Renio/química , Aniones/química , Complejos de Coordinación/síntesis química , Técnicas Electroquímicas , Luminiscencia , Sustancias Luminiscentes/síntesis química , Modelos Moleculares , Conformación Molecular , Piridazinas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA