Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Chem Biol ; 19(11): 1342-1350, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37231267

RESUMEN

Acinetobacter baumannii is a nosocomial Gram-negative pathogen that often displays multidrug resistance. Discovering new antibiotics against A. baumannii has proven challenging through conventional screening approaches. Fortunately, machine learning methods allow for the rapid exploration of chemical space, increasing the probability of discovering new antibacterial molecules. Here we screened ~7,500 molecules for those that inhibited the growth of A. baumannii in vitro. We trained a neural network with this growth inhibition dataset and performed in silico predictions for structurally new molecules with activity against A. baumannii. Through this approach, we discovered abaucin, an antibacterial compound with narrow-spectrum activity against A. baumannii. Further investigations revealed that abaucin perturbs lipoprotein trafficking through a mechanism involving LolE. Moreover, abaucin could control an A. baumannii infection in a mouse wound model. This work highlights the utility of machine learning in antibiotic discovery and describes a promising lead with targeted activity against a challenging Gram-negative pathogen.


Asunto(s)
Acinetobacter baumannii , Aprendizaje Profundo , Animales , Ratones , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana
2.
Plant J ; 109(3): 693-707, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34786774

RESUMEN

This study focuses on the biosynthesis of a suite of specialized metabolites from Cannabis that are known as the 'bibenzyls'. In planta, bibenzyls accumulate in response to fungal infection and various other biotic stressors; however, it is their widely recognized anti-inflammatory properties in various animal cell models that have garnered recent therapeutic interest. We propose that these compounds are synthesized via a branch point from the core phenylpropanoid pathway in Cannabis, in a three-step sequence. First, various hydroxycinnamic acids are esterified to acyl-coenzyme A (CoA) by a member of the 4-coumarate-CoA ligase family (Cs4CL4). Next, these CoA esters are reduced by two double-bond reductases (CsDBR2 and CsDBR3) that form their corresponding dihydro-CoA derivatives from preferred substrates. Finally, the bibenzyl backbone is completed by a polyketide synthase that specifically condenses malonyl-CoA with these dihydro-hydroxycinnamoyl-CoA derivatives to form two bibenzyl scaffolds: dihydropiceatannol and dihydroresveratrol. Structural determination of this 'bibenzyl synthase' enzyme (CsBBS2) indicates that a narrowing of the hydrophobic pocket surrounding the active site evolved to sterically favor the non-canonical and more flexible dihydro-hydroxycinnamoyl-CoA substrates in comparison with their oxidized relatives. Accordingly, three point mutations that were introduced into CsBBS2 proved sufficient to restore some enzymatic activity with an oxidized substrate, in vitro. Together, the identification of this set of Cannabis enzymes provides a valuable contribution to the growing 'parts prospecting' inventory that supports the rational metabolic engineering of natural product therapeutics.


Asunto(s)
Bibencilos/metabolismo , Vías Biosintéticas/genética , Cannabis/genética , Cannabis/metabolismo , Antiinflamatorios/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
3.
J Neurooncol ; 163(3): 635-645, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37354357

RESUMEN

PURPOSE: Medulloblastomas (MBs) constitute the most common malignant brain tumor in children and adolescents. MYC-amplified Group 3 MBs are characterized by disease recurrence, specifically in the leptomeninges, whereby patients with these metastatic tumors have a mortality rate nearing 100%. Despite limited research on such tumors, studies on MB metastases at diagnosis suggest targeting kinases to be beneficial. METHODS: To identify kinase inhibitors that eradicate cells driving therapy evasion and tumor dissemination, we utilized our established patient-derived xenograft (PDX) mouse-adapted therapy platform that models human MB metastatic recurrences following standard chemoradiotherapy. High-throughput screens of 640 kinase inhibitors were conducted against cells isolated from mouse spines in the PDX model and human fetal neural stem cells to reveal compounds that targeted these treatment-refractory, metastatic cells, whilst sparing healthy cells. Blood-brain barrier permeability assays and additional in vitro experimentation helped select top candidates for in vivo studies. RESULTS: Recurrent Group 3 MB PDX spine cells were therapeutically vulnerable to a selective checkpoint kinase 1 (CHK1) inhibitor and small molecular inhibitor of platelet-derived growth factor receptor beta (PDGFRß). Inhibitor-treated cells showed a significant reduction in MB stem cell properties associated with treatment failure. Mice also demonstrated survival advantage when treated with a CHK1 inhibitor ex vivo. CONCLUSION: We identified CHK1 and PDGFRß inhibitors that effectively target MB cells fueling treatment-refractory metastases. With limited research on effective therapies for Group 3 MB metastatic recurrences, this work highlights promising therapeutic options to treat these aggressive tumors. Additional studies are warranted to investigate these inhibitors' mechanisms and recommended in vivo administration.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Humanos , Niño , Ratones , Animales , Adolescente , Meduloblastoma/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Encefálicas/tratamiento farmacológico , Modelos Animales de Enfermedad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Cerebelosas/patología , Línea Celular Tumoral
4.
Org Biomol Chem ; 21(22): 4683-4693, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37222259

RESUMEN

Cannabinoids are naturally occurring bioactive compounds with the potential to help treat chronic illnesses including epilepsy, Parkinson's disease, dementia and multiple sclerosis. Their general structures and efficient syntheses are well documented in the literature, yet their quantitative structure-activity relationships (QSARs), particularly 3-dimensional (3-D) conformation-specific bioactivities, are not fully resolved. Cannabigerol (CBG), an antibacterial precursor molecule for the most abundant phytocannabinoids, was characterised herein using density functional theory (DFT), together with selected analogues, to ascertain the influence of the 3D structure on their activity and stability. Results showed that the CBG family's geranyl chains tend to coil around the central phenol ring while its alkyl side-chains form H-bonds with the para-substituted hydroxyl groups as well as CH⋯π interactions with the aromatic density of the ring itself, among other interactions. Although weakly polar, these interactions are structurally and dynamically influential, effectively 'stapling' the ends of the chains to the central ring structure. Molecular docking of the differing 3-D poses of CBG to cytochrome P450 3A4 resulted in lowered inhibitory action by the coiled conformers, relative to their fully-extended counterparts, helping explain the trends in the inhibition of the metabolic activity of the CYP450 3A4. The approach detailed herein represents an effective method for the characterisation of other bioactive molecules, towards improved understanding of their QSARs and in guiding the rational design and synthesis of related compounds.


Asunto(s)
Cannabinoides , Simulación del Acoplamiento Molecular , Cannabinoides/farmacología , Conformación Molecular , Relación Estructura-Actividad Cuantitativa
5.
J Nat Prod ; 83(9): 2587-2591, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32972142

RESUMEN

The synthesis of three phenolic natural products has been accomplished with unprecedented efficiency using a new alumina-promoted regioselective aromatic allylation reaction. Cannabigerol and grifolin were prepared in one step from the inexpensive 5-alkyl-resorcinols olivetol and orcinol. Piperogalin was synthesized, for the first time, via two sequential allylations of orcinol with geraniol and prenol.


Asunto(s)
Óxido de Aluminio/química , Cannabinoides/síntesis química , Resorcinoles/síntesis química , Cannabis/química , Catálisis , Estructura Molecular , Terpenos/síntesis química
6.
J Nat Prod ; 83(4): 1092-1098, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32227883

RESUMEN

The natural product veranamine was isolated from the marine sponge Verongula rigida. It contains a unique heterocyclic scaffold and demonstrates in vivo antidepressant activity and selective affinity for 5HT2B and sigma-1 receptors. The first total synthesis of veranamine is reported. Our scalable synthesis offers veranamine in six steps and 25% yield via an unprecedented vinylogous Pictet-Gams pyridine formation strategy. Veranamine is a promising new lead compound for antidepressant drug development.


Asunto(s)
Antidepresivos/farmacología , Poríferos/química , Animales , Antidepresivos/química , Antidepresivos/aislamiento & purificación , Estructura Molecular
7.
Bioorg Med Chem Lett ; 26(5): 1471-4, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26832787

RESUMEN

A series of functionalized coumarins were synthesized and evaluated for their capacity to inhibit the resistance to starvation of pancreatic cancer cells. This form of cytotoxicity, termed 'antiausterity' activity, was evaluated using a preferential cytotoxicity assay that compared cell survival in nutrient poor and nutrient rich conditions. Six of the seventeen compounds showed weak antiausterity activity against PANC-1. Compound 34 was active against PANC-1, MIA PaCa-2, and Capan-1 cancer cell lines. All of the compounds tested were simplified structural analogs of previously reported natural product leads. Six of the compounds, including 34, contain functionalized triazoles as novel potential bioisosteres of the side chain of the natural product angelmarin. Overall, the analogs were found to have low antiausterity activity relative to the corresponding natural products.


Asunto(s)
Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/farmacología , Productos Biológicos/farmacología , Cumarinas/síntesis química , Cumarinas/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Antineoplásicos Fitogénicos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cumarinas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad
8.
J Org Chem ; 80(7): 3701-7, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25738925

RESUMEN

A simple and inexpensive methodology is reported for the conversion of alkenes to 1,2-dibromo alkanes via oxidative bromination using HBr paired with dimethyl sulfoxide, which serves as the oxidant as well as cosolvent. The substrate scope includes 21 olefins brominated in good to excellent yields. Three of six styrene derivatives yielded bromohydrins under the reaction conditions.

9.
Cell Chem Biol ; 31(4): 760-775.e17, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38402621

RESUMEN

Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.


Asunto(s)
Aminoacil-ARNt Sintetasas , Antifúngicos , Animales , Ratones , Antifúngicos/farmacología , Aminoacil-ARNt Sintetasas/genética , Candida albicans , Relación Estructura-Actividad
10.
Cell Rep ; 43(4): 114053, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578824

RESUMEN

In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 µg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.


Asunto(s)
Antibacterianos , Girasa de ADN , Escherichia coli , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/farmacología , Girasa de ADN/metabolismo , Girasa de ADN/genética , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Transcripción Genética/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana
11.
J Smooth Muscle Res ; 59: 34-57, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37407438

RESUMEN

Garcinia buchananii stem bark extract (GBB), commonly used for treating diarrhea in Africa, triggers ectopic aboral contractions, causing inhibition of propulsive motility in the colon ex vivo. To determine whether or not these effects were associated with decreased inhibitory neuromuscular transmission, the responsible constituent compounds, and mechanisms of action, we studied the effects of GBB and specific fractions and flavanones isolated from GBB on intestinal motility using pellet propulsion assays in guinea pig distal colons. In addition, microelectrode recordings were used to measure the effects on the inhibitory junction potentials (IJPs) in the porcine ileum and descending colon smooth muscle. Psychoactive Drug Screening Program secondary receptor functional assays were used to determine whether or not GBB and its constituent compounds act via purinergic (P2Y) and muscarinic receptors. GBB inhibited propulsive motility, but (2R,3S,2″R,3″R)-manniflavanone (MNF), (2R,3S,2″R,3″R)-GB-2 (GB-2) and (2R,3S,2″S)-buchananiflavanone (BNF), the main ingredients of GBB, did not affect motility. We discovered that, in the porcine descending colon, IJPs contained purinergic, nitrergic, and nonpurinergic nonnitrergic components. Furthermore, ileal IJPs were purely purinergic. GBB blocked all components of IJPs, while MNF and GB-2 inhibited purinergic IJPs only. BNF inhibited the purinergic and nonpurinergic components of IJPs. MRS2365, a Y1 (P2Y) agonist, did not evoke sustained membrane hyperpolarization in the presence of GBB. However, GBB, MNF, GB-2 and BNF did not affect P2Y or muscarinic receptors. In conclusion, inhibitory neuromuscular transmission in the porcine descending colon involves all components of IJPs. GBB decreases inhibitory neuromuscular transmission, likely by the actions of MNF, GB-2 and BNF. These effects do not involve P2Y or muscarinic receptors.


Asunto(s)
Flavonas , Garcinia , Animales , Cobayas , Corteza de la Planta , Colon , Flavonas/farmacología
12.
Chemistry ; 18(13): 3804-20, 2012 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-22374742

RESUMEN

Directed remote aromatic metalations are useful synthetic transformations allowing for rapid regioselective access to elaborate highly substituted carbocyclic aromatic and heteroaromatic systems. This review unravels the tangle of data reported on directed remote aromatic metalations. Through a careful analysis of critically selected examples, advanced rationalizations of remote metalation regioselectivities are presented. These extend beyond the complex-induced proximity effect (CIPE). Mechanisms, driving forces, and parameters influencing remote metalations are discussed. An understanding of these metalation mechanisms enables more accurate predictability of justification of regiochemical outcomes of these useful synthetic transformations.


Asunto(s)
Compuestos Heterocíclicos/química , Litio/química , Metales/química , Compuestos Organometálicos/química , Catálisis , Estructura Molecular , Estereoisomerismo
13.
European J Org Chem ; 2012(33): 6508-6512, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23525858

RESUMEN

A series of nineteen benzimidazoles are prepared from ortho-nitroanilines via one-pot transfer hydrogenation, condensation, and dehydrogenation enabled by the concurrent use of two heterogeneous catalysts: montmorillonite-K10 and Pd/C. This strategy is further employed to accomplish a five-step, three-component synthesis of an antifungal benzimidazoquinazoline using a simple one-pot procedure.

14.
RSC Chem Biol ; 3(10): 1230-1239, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36320893

RESUMEN

Exchange proteins directly activated by cAMP (EPAC) are guanine nucleotide exchange factors for the small GTPases, Rap1 and Rap2. They regulate several physiological functions and mitigation of their activity has been suggested as a possible treatment for multiple diseases such as cardiomyopathy, diabetes, chronic pain, and cancer. Several EPAC-specific modulators have been developed, however studies that quantify their structure-activity relationships are still lacking. Here we propose a quantitative structure-activity relationship (QSAR) model for a series of EPAC-specific compounds. The model demonstrated high reproducibility and predictivity and the predictive ability of the model was tested against a series of compounds that were unknown to the model. The compound with the highest predicted affinity was validated experimentally through fluorescence-based competition assays and NMR experiments revealed its mode of binding and mechanism of action as a partial agonist. The proposed QSAR model can, therefore, serve as an effective screening tool to identify promising EPAC-selective drug leads with enhanced potency.

15.
ACS Infect Dis ; 8(1): 170-182, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34860493

RESUMEN

Exposure of the Gram-negative pathogen Pseudomonas aeruginosa to subinhibitory concentrations of antibiotics increases the formation of biofilms. We exploited this phenotype to identify molecules with potential antimicrobial activity in a biofilm-based high-throughput screen. The anti-inflammatory compound BAY 11-7082 induced dose-dependent biofilm stimulation, indicative of antibacterial activity. We confirmed that BAY 11-7082 inhibits the growth of P. aeruginosa and other priority pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). We synthesized 27 structural analogues, including a series based on the related scaffold 3-(phenylsulfonyl)-2-pyrazinecarbonitrile (PSPC), 10 of which displayed increased anti-Staphylococcal activity. Because the parent molecule inhibits the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome, we measured the ability of select analogues to reduce interleukin-1ß (IL-1ß) production in mammalian macrophages, identifying minor differences in the structure-activity relationship for the anti-inflammatory and antibacterial properties of this scaffold. Although we could evolve stably resistant MRSA mutants with cross-resistance to BAY 11-7082 and PSPC, their lack of shared mutations suggested that the two molecules could have multiple targets. Finally, we showed that BAY 11-7082 and its analogues synergize with penicillin G against MRSA, suggesting that this scaffold may serve as an interesting starting point for the development of antibiotic adjuvants.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Pruebas de Sensibilidad Microbiana , Nitrilos , Sulfonas/farmacología
16.
ACS Infect Dis ; 8(10): 2187-2197, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36098580

RESUMEN

Gram-negative bacteria are intrinsically resistant to a plethora of antibiotics that effectively inhibit the growth of Gram-positive bacteria. The intrinsic resistance of Gram-negative bacteria to classes of antibiotics, including rifamycins, aminocoumarins, macrolides, glycopeptides, and oxazolidinones, has largely been attributed to their lack of accumulation within cells due to poor permeability across the outer membrane, susceptibility to efflux pumps, or a combination of these factors. Due to the difficulty in discovering antibiotics that can bypass these barriers, finding targets and compounds that increase the activity of these ineffective antibiotics against Gram-negative bacteria has the potential to expand the antibiotic spectrum. In this study, we investigated the genetic determinants for resistance to rifampicin, novobiocin, erythromycin, vancomycin, and linezolid to determine potential targets of antibiotic-potentiating compounds. We subsequently performed a high-throughput screen of ∼50,000 diverse, synthetic compounds to uncover molecules that potentiate the activity of at least one of the five Gram-positive-targeting antibiotics. This led to the discovery of two membrane active compounds capable of potentiating linezolid and an inhibitor of lipid A biosynthesis capable of potentiating rifampicin and vancomycin. Furthermore, we characterized the ability of known inhibitors of lipid A biosynthesis to potentiate the activity of rifampicin against Gram-negative pathogens.


Asunto(s)
Antibacterianos , Oxazolidinonas , Antibacterianos/química , Antibacterianos/farmacología , Eritromicina/farmacología , Bacterias Gramnegativas/genética , Linezolid , Lípido A , Novobiocina/farmacología , Oxazolidinonas/farmacología , Rifampin/farmacología , Vancomicina/farmacología
17.
ACS Med Chem Lett ; 13(2): 284-291, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35178184

RESUMEN

Metergoline is a semisynthetic ergot alkaloid identified recently as an inhibitor of the Gram-negative intracellular pathogen Salmonella Typhimurium (S. Tm). With the previously unknown antibacterial activity of metergoline, we explored structure-activity relationships (SARs) with a series of carbamate, urea, sulfonamide, amine, and amide analogues. Cinnamide and arylacrylamide derivatives show improved potency relative to metergoline against Gram-positive bacteria, and pyridine derivative 38 is also effective against methicillin-resistant Staphylococcus aureus (MRSA) in a murine skin infection model. Arylacrylamide analogues of metergoline show modest activity against wild-type (WT) Gram-negative bacteria but are more active against strains of efflux-deficient S. Tm and hyperpermeable Escherichia coli. The potencies against WT strains of E. coli, Acinetobacter baumannii, and Burkholderia cenocepacia are also improved considerably (up to >128-fold) with the outer-membrane permeabilizer SPR741, suggesting that the ergot scaffold represents a new lead for the development of new antibiotics.

18.
Nat Commun ; 13(1): 770, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140212

RESUMEN

Evidence suggests that caffeine (CF) reduces cardiovascular disease (CVD) risk. However, the mechanism by which this occurs has not yet been uncovered. Here, we investigated the effect of CF on the expression of two bona fide regulators of circulating low-density lipoprotein cholesterol (LDLc) levels; the proprotein convertase subtilisin/kexin type 9 (PCSK9) and the low-density lipoprotein receptor (LDLR). Following the observation that CF reduced circulating PCSK9 levels and increased hepatic LDLR expression, additional CF-derived analogs with increased potency for PCSK9 inhibition compared to CF itself were developed. The PCSK9-lowering effect of CF was subsequently confirmed in a cohort of healthy volunteers. Mechanistically, we demonstrate that CF increases hepatic endoplasmic reticulum (ER) Ca2+ levels to block transcriptional activation of the sterol regulatory element-binding protein 2 (SREBP2) responsible for the regulation of PCSK9, thereby increasing the expression of the LDLR and clearance of LDLc. Our findings highlight ER Ca2+ as a master regulator of cholesterol metabolism and identify a mechanism by which CF may protect against CVD.


Asunto(s)
Cafeína/farmacología , Colesterol/metabolismo , Hígado/metabolismo , Proproteína Convertasa 9/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/farmacología , Animales , LDL-Colesterol/metabolismo , Células Hep G2 , Hepatocitos , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proproteína Convertasa 9/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo
19.
Org Lett ; 23(9): 3373-3378, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33861615

RESUMEN

Sulfamates and sulfamides are most often synthesized from alcohols and amines with sulfamoyl chloride, which is an unstable reagent. We have identified hexafluoroisopropyl sulfamate (HFIPS) as a bench-stable solid that reacts readily with a wide variety of alcohols, amines, phenols, and anilines under mild reaction conditions. The sole byproduct of the reaction is hexafluoroisopropanol (HFIP) and reaction products can often be isolated in high purity after an aqueous workup (optional) and removal of solvents by evaporation.

20.
Org Lett ; 23(12): 4548-4552, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34053223

RESUMEN

Phosphines were previously unusable as Pummerer-type nucleophiles due to competing redox chemistry with sulfoxides. Here we circumvent this problem to achieve a formal phosphine Pummerer reaction that offers thioalkyl phosphonium salts that, in turn, give rise to diverse vinyl sulfides via Wittig olefinations. Thirty vinyl sulfides are thus prepared from (alkylthioalkyl)triphenyl phosphonium salts and aldehydes. The hydrolysis of these vinyl sulfides offers an efficient and versatile two-step one-carbon homologation of aldehydes to ketones.


Asunto(s)
Aldehídos/química , Cetonas/síntesis química , Fosfinas/química , Carbono/química , Catálisis , Estructura Molecular , Oxidación-Reducción , Sales (Química) , Sulfuros/química , Sulfóxidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA