Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771244

RESUMEN

The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.


Asunto(s)
Callithrix , Cognición , Conectoma , Macaca , Animales , Ratones , Cognición/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Corteza Cerebral/fisiología
2.
Neuroimage ; 225: 117479, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33099005

RESUMEN

Hierarchy is a major organizational principle of the cortex and underscores modern computational theories of cortical function. The local microcircuit amplifies long-distance inter-areal input, which show distance-dependent changes in their laminar profiles. Statistical modeling of these changes in laminar profiles demonstrates that inputs from multiple hierarchical levels to their target areas show remarkable consistency, allowing the construction of a cortical hierarchy based on a principle of hierarchical distance. The statistical modeling that is applied to structure can also be applied to laminar differences in the oscillatory coherence between areas thereby determining a functional hierarchy of the cortex. Close examination of the anatomy of inter-areal connectivity reveals a dual counterstream architecture with well-defined distance-dependent feedback and feedforward pathways in both the supra- and infragranular layers, suggesting a multiplicity of feedback pathways with well-defined functional properties. These findings are consistent with feedback connections providing a generative network involved in a wide range of cognitive functions. A dynamical model constrained by connectivity data sheds insight into the experimentally observed signatures of frequency-dependent Granger causality for feedforward versus feedback signaling. Concerted experiments capitalizing on recent technical advances and combining tract-tracing, high-resolution fMRI, optogenetics and mathematical modeling hold the promise of a much improved understanding of lamina-constrained mechanisms of neural computation and cognition. However, because inter-areal interactions involve cortical layers that have been the target of important evolutionary changes in the primate lineage, these investigations will need to include human and non-human primate comparisons.


Asunto(s)
Modelos Neurológicos , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Animales , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética
3.
Cereb Cortex ; 30(3): 1407-1421, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31504286

RESUMEN

There is an extensive modification of the functional organization of the brain in the congenital blind human, although there is little understanding of the structural underpinnings of these changes. The visual system of macaque has been extensively characterized both anatomically and functionally. We have taken advantage of this to examine the influence of congenital blindness in a macaque model of developmental anophthalmia. Developmental anophthalmia in macaque effectively removes the normal influence of the thalamus on cortical development leading to an induced "hybrid cortex (HC)" combining features of primary visual and extrastriate cortex. Here we show that retrograde tracers injected in early visual areas, including HC, reveal a drastic reduction of cortical projections of the reduced lateral geniculate nucleus. In addition, there is an important expansion of projections from the pulvinar complex to the HC, compared to the controls. These findings show that the functional consequences of congenital blindness need to be considered in terms of both modifications of the interareal cortical network and the ascending visual pathways.


Asunto(s)
Ceguera/congénito , Cuerpos Geniculados/fisiopatología , Corteza Visual/fisiopatología , Vías Visuales/fisiología , Animales , Ceguera/fisiopatología , Mapeo Encefálico/métodos , Femenino , Cuerpos Geniculados/fisiología , Macaca fascicularis , Masculino , Neuronas/fisiología , Tálamo/fisiología , Tálamo/fisiopatología , Corteza Visual/fisiología , Vías Visuales/fisiopatología
4.
PLoS Biol ; 14(7): e1002512, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27441598

RESUMEN

Mammals show a wide range of brain sizes, reflecting adaptation to diverse habitats. Comparing interareal cortical networks across brains of different sizes and mammalian orders provides robust information on evolutionarily preserved features and species-specific processing modalities. However, these networks are spatially embedded, directed, and weighted, making comparisons challenging. Using tract tracing data from macaque and mouse, we show the existence of a general organizational principle based on an exponential distance rule (EDR) and cortical geometry, enabling network comparisons within the same model framework. These comparisons reveal the existence of network invariants between mouse and macaque, exemplified in graph motif profiles and connection similarity indices, but also significant differences, such as fractionally smaller and much weaker long-distance connections in the macaque than in mouse. The latter lends credence to the prediction that long-distance cortico-cortical connections could be very weak in the much-expanded human cortex, implying an increased susceptibility to disconnection syndromes such as Alzheimer disease and schizophrenia. Finally, our data from tracer experiments involving only gray matter connections in the primary visual areas of both species show that an EDR holds at local scales as well (within 1.5 mm), supporting the hypothesis that it is a universally valid property across all scales and, possibly, across the mammalian class.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma/métodos , Modelos Neurológicos , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Algoritmos , Animales , Corteza Cerebral/anatomía & histología , Simulación por Computador , Femenino , Humanos , Macaca , Masculino , Ratones , Modelos Anatómicos , Red Nerviosa/anatomía & histología , Vías Nerviosas/anatomía & histología , Especificidad de la Especie
5.
Cereb Cortex ; 28(8): 3017-3034, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29850900

RESUMEN

There is little understanding of the structural underpinnings of the functional reorganization of the cortex in the congenitally blind human. Taking advantage of the extensive characterization of the macaque visual system, we examine in macaque the influence of congenital blindness resulting from the removal of the retina during in utero development. This effectively removes the normal influence of the thalamus on cortical development leading to an induced hybrid cortex (HC) combining features of primary visual and extrastriate cortex. Retrograde tracers injected in HC reveal a local, intrinsic connectivity characteristic of higher order areas and show that the HC receives a uniquely strong, purely feedforward projection from striate cortex but no ectopic inputs, except from subiculum, and entorhinal cortex. Statistical modeling of quantitative connectivity data shows that HC is relatively high in the cortical hierarchy and receives a reinforced input from ventral stream areas while the overall organization of the functional streams are conserved. The directed and weighted anophthalmic cortical graph from the present study can be used to construct dynamic and structural models. These findings show how the sensory periphery governs cortical phenotype and reveal the importance of developmental arealization for understanding the functional reorganization in congenital blindness.


Asunto(s)
Mapeo Encefálico , Amaurosis Congénita de Leber/patología , Neuronas/fisiología , Corteza Visual/patología , Corteza Visual/fisiopatología , Vías Visuales/fisiopatología , Animales , Modelos Animales de Enfermedad , Macaca fascicularis , Red Nerviosa/patología , Pentobarbital/metabolismo
6.
Proc Natl Acad Sci U S A ; 110(13): 5187-92, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479610

RESUMEN

We investigated the influence of interareal distance on connectivity patterns in a database obtained from the injection of retrograde tracers in 29 areas distributed over six regions (occipital, temporal, parietal, frontal, prefrontal, and limbic). One-third of the 1,615 pathways projecting to the 29 target areas were reported only recently and deemed new-found projections (NFPs). NFPs are predominantly long-range, low-weight connections. A minimum dominating set analysis (a graph theoretic measure) shows that NFPs play a major role in globalizing input to small groups of areas. Randomization tests show that (i) NFPs make important contributions to the specificity of the connectivity profile of individual cortical areas, and (ii) NFPs share key properties with known connections at the same distance. We developed a similarity index, which shows that intraregion similarity is high, whereas the interregion similarity declines with distance. For area pairs, there is a steep decline with distance in the similarity and probability of being connected. Nevertheless, the present findings reveal an unexpected binary specificity despite the high density (66%) of the cortical graph. This specificity is made possible because connections are largely concentrated over short distances. These findings emphasize the importance of long-distance connections in the connectivity profile of an area. We demonstrate that long-distance connections are particularly prevalent for prefrontal areas, where they may play a prominent role in large-scale communication and information integration.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral , Bases de Datos Factuales , Red Nerviosa , Animales , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Macaca , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología
7.
Netw Neurosci ; 5(1): 211-251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33688613

RESUMEN

At the inception of human brain mapping, two principles of functional anatomy underwrote most conceptions-and analyses-of distributed brain responses: namely, functional segregation and integration. There are currently two main approaches to characterizing functional integration. The first is a mechanistic modeling of connectomics in terms of directed effective connectivity that mediates neuronal message passing and dynamics on neuronal circuits. The second phenomenological approach usually characterizes undirected functional connectivity (i.e., measurable correlations), in terms of intrinsic brain networks, self-organized criticality, dynamical instability, and so on. This paper describes a treatment of effective connectivity that speaks to the emergence of intrinsic brain networks and critical dynamics. It is predicated on the notion of Markov blankets that play a fundamental role in the self-organization of far from equilibrium systems. Using the apparatus of the renormalization group, we show that much of the phenomenology found in network neuroscience is an emergent property of a particular partition of neuronal states, over progressively coarser scales. As such, it offers a way of linking dynamics on directed graphs to the phenomenology of intrinsic brain networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA