Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 356(3): e2200493, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36437108

RESUMEN

3,3'-Diindolylmethane (DIM), a natural product-derived compound formed upon ingestion of cruciferous vegetables, was recently described to act as a partial agonist of the anti-inflammatory cannabinoid (CB) receptor subtype CB2 . In the present study, we synthesized and evaluated a series of DIM derivatives and determined their affinities for human CB receptor subtypes in radioligand binding studies. Potent compounds were additionally evaluated in functional cAMP accumulation and ß-arrestin recruitment assays. Small substituents in the 4-position of both indole rings of DIM were beneficial for high CB2 receptor affinity and efficacy. Di-(4-cyano-1H-indol-3-yl)methane (46, PSB-19837, EC50 : cAMP, 0.0144 µM, 95% efficacy compared to the full standard agonist CP55,940; ß-arrestin, 0.0149 µM, 67% efficacy) was the most potent CB2 receptor agonist of the present series. Di-(4-bromo-1H-indol-3-yl)methane (44, PSB-19571) showed higher potency in ß-arrestin (EC50 0.0450 µM, 61% efficacy) than in cAMP accumulation assays (EC50 0.509 µM, 85% efficacy) while 3-((1H-indol-3-yl)methyl)-4-methyl-1H-indole (149, PSB-18691) displayed a 19-fold bias for the G protein pathway (EC50 : cAMP, 0.0652 µM; ß-arrestin, 1.08 µM). DIM and its analogs act as allosteric CB2 receptor agonists. These potent CB2 receptor agonists have potential as novel drugs for the treatment of inflammatory diseases.


Asunto(s)
Agonistas de Receptores de Cannabinoides , Cannabinoides , Humanos , Relación Estructura-Actividad , Agonistas de Receptores de Cannabinoides/farmacología , Indoles/farmacología , Indoles/química , beta-Arrestinas , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1
2.
ACS Pharmacol Transl Sci ; 7(5): 1415-1425, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38751633

RESUMEN

The adenosine A2A receptor (A2AAR) belongs to the rhodopsin-like G protein-coupled receptor (GPCR) family, which constitutes the largest class of GPCRs. Partial agonists show reduced efficacy as compared to physiological agonists and can even act as antagonists in the presence of a full agonist. Here, we determined an X-ray crystal structure of the partial A2AAR agonist 2-amino-6-[(1H-imidazol-2-ylmethyl)sulfanyl]-4-p-hydroxyphenyl-3,5-pyridinedicarbonitrile (LUF5834) in complex with the A2AAR construct A2A-PSB2-bRIL, stabilized in its inactive conformation and being devoid of any mutations in the ligand binding pocket. The determined high-resolution structure (2.43 Å) resolved water networks and crucial binding pocket interactions. A direct hydrogen bond of the p-hydroxy group of LUF5834 with T883.36 was observed, an amino acid that was mutated to alanine in the most frequently used A2AAR crystallization constructs thus preventing the discovery of its interactions in most of the previous A2AAR co-crystal structures. G protein dissociation studies confirmed partial agonistic activity of LUF5834 as compared to that of the full agonist N-ethylcarboxamidoadenosine (NECA). In contrast to NECA, the partial agonist was still able to bind to the receptor construct locked in its inactive conformation by an S913.39K mutation, although with an affinity lower than that at the native receptor. This could explain the compound's partial agonistic activity: while full A2AAR agonists bind exclusively to the active conformation, likely following conformational selection, partial agonists bind to active as well as inactive conformations, showing higher affinity for the active conformation. This might be a general mechanism of partial agonism also applicable to other GPCRs.

3.
J Med Chem ; 67(12): 9896-9926, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38885438

RESUMEN

The human orphan G protein-coupled receptor GPR18, activated by Δ9-tetrahydrocannabinol (THC), constitutes a promising drug target in immunology and cancer. However, studies on GPR18 are hampered by the lack of suitable tool compounds. In the present study, potent and selective GPR18 agonists were developed showing low nanomolar potency at human and mouse GPR18, determined in ß-arrestin recruitment assays. Structure-activity relationships were analyzed, and selectivity versus cannabinoid (CB) and CB-like receptors was assessed. Compound 51 (PSB-KK1415, EC50 19.1 nM) was the most potent GPR18 agonist showing at least 25-fold selectivity versus CB receptors. The most selective GPR18 agonist 50 (PSB-KK1445, EC50 45.4 nM) displayed >200-fold selectivity versus both CB receptor subtypes, GPR55, and GPR183. The new GPR18 agonists showed minimal species differences, while THC acted as a weak partial agonist at the mouse receptor. The newly discovered compounds represent the most potent and selective GPR18 agonists reported to date.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animales , Relación Estructura-Actividad , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células HEK293 , Receptores de Cannabinoides/metabolismo , Dronabinol/farmacología , Dronabinol/análogos & derivados , Dronabinol/química
4.
ACS Pharmacol Transl Sci ; 5(5): 373-386, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35592437

RESUMEN

The adenosine A2B receptor (A2BAR) belongs to the rhodopsin-like G protein-coupled receptor (GPCR) family. It is upregulated under hypoxic conditions, in inflammation and cancer. Previous studies indicated the coupling of the A2BAR to different G proteins, mainly Gs, but in some cases Gq/11 or Gi, depending on the cell type. We have now utilized novel technologies, (i) heterologous expression of individual members of the Gαq/11 protein family (Gαq, Gα11, Gα14, and Gα15) in Gαq/11 knockout cells, and (ii) the TRUPATH platform, allowing the direct observation of Gα protein activation for each of the Gα subunits by bioluminescence resonance energy transfer (BRET) measurements. Three structurally diverse A2BAR agonists were studied: the cognate agonist adenosine, its metabolically stable analog NECA, and the non-nucleosidic partial agonist BAY 60-6583. Adenosine and NECA activated most members of all four Gα protein families (Gαs, Gαq/11, Gαi, and Gα12/13). Significant differences in potencies and efficacies were observed; the highest efficacies were determined at the Gα15, Gαs, and Gα12 proteins, and for NECA additionally at the Gαi2 protein. In contrast, the partial agonist BAY 60-6583 only activated Gα15, Gαs, and Gα12 proteins. Adenosine deaminase, an allosteric modulator of ARs, selectively increased the potency and efficacy of NECA and BAY 60-6583 at the Gα15 protein, while it had no effect or decreased efficacy at the other Gα proteins. We conclude that the A2BAR is preferably coupled to the Gα15, Gαs, and Gα12 proteins. Upon upregulation of receptor or Gα protein expression, coupling to further Gα proteins likely occurs. Importantly, different agonists can display different activation profiles.

5.
Eur J Med Chem ; 232: 114138, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35193075

RESUMEN

The development of neurodegenerative diseases is associated with cerebral inflammation, which activates resident immune cells of the central nervous system (CNS), namely microglial cells that show an up-regulation of the cannabinoid subtype 2 receptor (CB2R) expression. Therefore our work aimed to design and synthesize a radiotracer for the detection of CB2R expression by positron emission tomography (PET) allowing an early diagnosis of neurodegenerative diseases. For the development of such a PET tracer, N-alkyl-substituted indole-3-yl-tetramethylcyclopropylketones served as lead structures due to their high CB2R potency and selectivity, allowing radiolabeling on the N-alkyl chain. To this end, eight novel fluorinated N-alkyl-indole-3-yl-tetramethylcyclopropylketones were synthesized, investigated in radioligand binding studies, and structure-activity relationships were evaluated. The most promising candidate was (1-(4-fluoropropyl)-1H-indole-3-yl)(2,2,3,3-tetramethyl-cyclopropyl)methanone (Ki: 7.88 nM at the CB2R, 3430 nM at cannabinoid subtype 1 receptor (CB1R)). A precursor was synthesized, radiofluorinated with no-carrier-added [18F]F- by nucleophilic substitution of a tosyl group, and the resulting PET ligand was purified, all being performed on a fully automated synthesis module. The tracer was produced in 34 ± 6% radiochemical yield within 2 h and with molar activities of up to 1500 GBq/µmol. A first preclinical evaluation was carried out including determination of logP, metabolic stability by liver microsomes, and autoradiography. The novel PET tracer for imaging CB2R showed promising results warranting subsequent clinical evaluation.


Asunto(s)
Cannabinoides , Trazadores Radiactivos , Encéfalo , Radioisótopos de Flúor/química , Ligandos , Tomografía de Emisión de Positrones/métodos , Receptores de Cannabinoides , Tomografía Computarizada por Rayos X
6.
ACS Med Chem Lett ; 11(10): 2024-2031, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33062188

RESUMEN

GPR18 is a rhodopsin-like orphan G-protein-coupled receptor (GPCR) that is activated by the natural cannabinoid (CB) Δ9-tetrahydrocannabinol (THC). It is highly expressed in immune cells and represents a promising new drug target. However, THC is much more potent in activating CB receptors than GPR18, and several other proposed lipidic agonists for GPR18 have not been independently confirmed. Herein we describe the first non-lipid-like agonists for GPR18 based on a tricyclic xanthine-derived scaffold, along with initial structure-activity relationships. PSB-KD107 (5) and PSB-KD477 (16) displayed significantly higher potency and efficacy than THC, determined in a GPR18-dependent ß-arrestin recruitment assay, and were found to be selective versus the CB-sensitive receptors CB1, CB2, and GPR55. Structure-activity relationships were steep, and indole substitution was crucial for biological activity. These first selective agonists, which are structurally distinct from the lipidic agonist(s), will allow target validation studies and may eventually contribute to the deorphanization of GPR18.

7.
Biomolecules ; 10(5)2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365486

RESUMEN

GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune system. It is activated by the cannabinoid receptor (CB) agonist ∆9-tetrahydrocannabinol (THC). Several further lipids have been proposed to act as GPR18 agonists, but these results still require unambiguous confirmation. In the present study, we constructed a homology model of the human GPR18 based on an ensemble of three GPCR crystal structures to investigate the binding modes of the agonist THC and the recently reported antagonists which feature an imidazothiazinone core to which a (substituted) phenyl ring is connected via a lipophilic linker. Docking and molecular dynamics simulation studies were performed. As a result, a hydrophobic binding pocket is predicted to accommodate the imidazothiazinone core, while the terminal phenyl ring projects towards an aromatic pocket. Hydrophobic interaction of Cys251 with substituents on the phenyl ring could explain the high potency of the most potent derivatives. Molecular dynamics simulation studies suggest that the binding of imidazothiazinone antagonists stabilizes transmembrane regions TM1, TM6 and TM7 of the receptor through a salt bridge between Asp118 and Lys133. The agonist THC is presumed to bind differently to GPR18 than to the distantly related CB receptors. This study provides insights into the binding mode of GPR18 agonists and antagonists which will facilitate future drug design for this promising potential drug target.


Asunto(s)
Agonistas de Receptores de Cannabinoides/química , Dronabinol/química , Simulación del Acoplamiento Molecular , Receptores Acoplados a Proteínas G/química , Sitios de Unión , Agonistas de Receptores de Cannabinoides/farmacología , Antagonistas de Receptores de Cannabinoides/química , Antagonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Humanos , Unión Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/metabolismo
8.
Eur J Med Chem ; 155: 381-397, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29902723

RESUMEN

GPR18 is a cannabinoid-activated orphan G protein-coupled receptor (GPCR) that is selectively expressed on immune cells. Despite its significant potential as a drug target for inflammatory diseases and cancer immunotherapy, only very few GPR18 ligands have been described to date. In the present study we investigated the structure-activity relationships (SARs) of (Z)-2-(3-(4-chlorobenzyloxy)benzylidene)-6,7-dihydro-2H-imidazo[2,1-b][1,3]thiazin-3(5H)-one (PSB-CB5, 5), the most potent GPR18 antagonist described to date. Analogs were synthesized that exhibit broad modifications of the heterocyclic core and/or variation of substituents at the benzylidene moiety. The compounds were investigated in ß-arrestin recruitment assays as inhibitors of human GPR18 activation by tetrahydrocannabinol (THC). Selectivity was assessed versus the cannabinoid receptors (CB1 and CB2) and versus GPR55, another orphan GPCR that interacts with cannabinoids. Phenyloxyalkyloxy-substituted benzylidenethiazinones with long alkyl chains (optimal length: hexamethylene) efficiently blocked GPR18 with similarly high potency as lead structure 5. (Z)-2-(3-(6-(4-Chlorophenoxy)hexyloxy)benzylidene)-6,7-dihydro-2H-imidazo[2,1-b][1,3]thiazin-3(5H)-one (PSB-CB-27, 23) exhibited the best profile: it displayed an IC50 value of 650 nM at GPR18 and showed improved selectivity versus CB receptors as compared to lead structure 5. Importantly, in contrast to 5, which showed only partial inhibition (60%), 23 led to a complete blockade of THC-induced GPR18 activation and is thus a superior tool for target validation. In addition, several compounds, e.g. 18 and 22, were identified as dual GPR18/GPR55 antagonists with similar potency at both targets, and selectivity versus CB receptors.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Imidazoles/farmacología , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Tiazinas/farmacología , Animales , Células CHO , Agonistas de Receptores de Cannabinoides/síntesis química , Agonistas de Receptores de Cannabinoides/química , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/síntesis química , Imidazoles/química , Estructura Molecular , Relación Estructura-Actividad , Tiazinas/síntesis química , Tiazinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA