Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(7): e2206762120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745792

RESUMEN

While there has been considerable success in the three-dimensional bioprinting of relatively large standalone filamentous tissues, the fabrication of solid fibers with ultrafine diameters or those cannular featuring ultrathin walls remains a particular challenge. Here, an enabling strategy for (bio)printing of solid and hollow fibers whose size ranges could be facilely adjusted across a broad spectrum, is reported, using an aqueous two-phase embedded (bio)printing approach combined with specially designed cross-linking and extrusion methods. The generation of standalone, alginate-free aqueous architectures using this aqueous two-phase strategy allowed freeform patterning of aqueous bioinks, such as those composed of gelatin methacryloyl, within the immiscible aqueous support bath of poly(ethylene oxide). Our (bio)printing strategy revealed the fabrication of standalone solid or cannular structures with diameters as small as approximately 3 or 40 µm, respectively, and wall thicknesses of hollow conduits down to as thin as <5 µm. With cellular functions also demonstrated, we anticipate the methodology to serve as a platform that may satisfy the needs for the different types of potential biomedical and other applications in the future, especially those pertaining to cannular tissues of ultrasmall diameters and ultrathin walls used toward regenerative medicine and tissue model engineering.


Asunto(s)
Alginatos , Bioimpresión , Alginatos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Hidrogeles/química , Gelatina/química , Bioimpresión/métodos , Impresión Tridimensional
2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941687

RESUMEN

Here, we present a physiologically relevant model of the human pulmonary alveoli. This alveolar lung-on-a-chip platform is composed of a three-dimensional porous hydrogel made of gelatin methacryloyl with an inverse opal structure, bonded to a compartmentalized polydimethylsiloxane chip. The inverse opal hydrogel structure features well-defined, interconnected pores with high similarity to human alveolar sacs. By populating the sacs with primary human alveolar epithelial cells, functional epithelial monolayers are readily formed. Cyclic strain is integrated into the device to allow biomimetic breathing events of the alveolar lung, which, in addition, makes it possible to investigate pathological effects such as those incurred by cigarette smoking and severe acute respiratory syndrome coronavirus 2 pseudoviral infection. Our study demonstrates a unique method for reconstitution of the functional human pulmonary alveoli in vitro, which is anticipated to pave the way for investigating relevant physiological and pathological events in the human distal lung.


Asunto(s)
Dispositivos Laboratorio en un Chip , Modelos Biológicos , Alveolos Pulmonares/fisiología , Células Epiteliales Alveolares , Antivirales/farmacología , Fumar Cigarrillos/efectos adversos , Dimetilpolisiloxanos/química , Gelatina/química , Humanos , Hidrogeles/química , Metacrilatos/química , Porosidad , Alveolos Pulmonares/citología , Alveolos Pulmonares/patología , Respiración , Mucosa Respiratoria/citología , Mucosa Respiratoria/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad
3.
Nano Lett ; 19(6): 3603-3611, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31010289

RESUMEN

Due to the combined advantages of cellulose and nanoscale (diameter 20-60 nm), bacterial cellulose possesses a series of attractive features including its natural origin, moderate biosynthesis process, good biocompatibility, and cost-effectiveness. Moreover, bacterial cellulose nanofibers can be conveniently processed into three-dimensional (3D) intertwined structures and form stable paper devices after simple drying. These advantages make it suitable as the material for construction of organ-on-a-chip devices using matrix-assisted sacrificial 3D printing. We successfully fabricated various microchannel structures embedded in the bulk bacterial cellulose hydrogels and retained their integrity after the drying process. Interestingly, these paper-based devices containing hollow microchannels could be rehydrated and populated with relevant cells to form vascularized tissue models. As a proof-of-concept demonstration, we seeded human umbilical vein endothelial cells (HUVECs) into the microchannels to obtain the vasculature and inoculated the MCF-7 cells onto the surrounding matrix of the paper device to build a 3D paper-based vascularized breast tumor model. The results showed that the microchannels were perfusable, and both HUVECs and MCF-7 cells exhibited favorable proliferation behaviors. This study may provide a new strategy for constructing simple and low-cost in vitro tissue models, which may find potential applications in drug screening and personalized medicine.


Asunto(s)
Bioimpresión/instrumentación , Celulosa/química , Polisacáridos Bacterianos/química , Impresión Tridimensional/instrumentación , Andamios del Tejido/química , Supervivencia Celular , Diseño de Equipo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células MCF-7 , Nanofibras/química , Papel , Ingeniería de Tejidos
4.
Adv Funct Mater ; 29(31)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33041741

RESUMEN

Current in vitro anti-tumor drug screening strategies are insufficiently portrayed lacking true perfusion and draining microcirculation systems, which may post significant limitation in reproducing the transport kinetics of cancer therapeutics explicitly. Herein, we report the fabrication of an improved tumor model consisting of bioprinted hollow blood vessel and lymphatic vessel pair, hosted in a three-dimensional (3D) tumor microenvironment-mimetic hydrogel matrix, termed as the tumor-on-a-chip with bioprinted blood and lymphatic vessel pair (TOC-BBL). The bioprinted blood vessel was perfusable channel with opening on both ends while the bioprinted lymphatic vessel was blinded on one end, both of which were embedded in a hydrogel tumor mass, with vessel permeability individually tunable through optimization of the composition of the bioinks. We demonstrated that systems with different combinations of these bioprinted blood/lymphatic vessels exhibited varying levels of diffusion profiles for biomolecules and anti-cancer drugs. Our TOC-BBL platform mimicking the natural pathway of drug-tumor interactions would have the drug introduced through the perfusable blood vessel, cross the vascular wall into the tumor tissue via diffusion, and eventually drained into the lymphatic vessel along with the carrier flow. Our results suggested that this unique in vitro tumor model containing the bioprinted blood/lymphatic vessel pair may have the capacity of simulating the complex transport mechanisms of certain pharmaceutical compounds inside the tumor microenvironment, potentially providing improved accuracy in future cancer drug screening.

5.
Int J Mol Sci ; 19(11)2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30463211

RESUMEN

Despite successful use, needle-based immunizations have several issues such as the risk of injuries and infections from the reuse of needles and syringes and the low patient compliance due to pain and fear of needles during immunization. In contrast, needle-free immunizations have several advantages including ease of administration, high level of patient compliance and the possibility of mass vaccination. Thus, there is an increasing interest on developing effective needle-free immunizations via cutaneous and mucosal approaches. Here, we discuss several methods of needle-free immunizations and provide insights into promising use of chitosan systems for successful immunization.


Asunto(s)
Quitosano/química , Inmunización , Agujas , Animales , Humanos , Inmunidad , Piel
7.
BMC Immunol ; 16: 71, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26608025

RESUMEN

BACKGROUND: To initiate mucosal immune responses, antigens in the intestinal lumen must be transported into gut-associated lymphoid tissue through M cells. Recently, it has been increasingly recognized that receptor activator of NF-kB ligand (RANKL) controls M cell differentiation by interacting with RANK expressed on the sub-epithelium of Peyer's patches. In this study, we increased the number of M cells using soluble RANKL (sRANKL) as a potent mucosal adjuvant. RESULTS: For efficient oral delivery of sRANKL, we constructed recombinant Lactococcus lactis (L. lactis) IL1403 secreting sRANKL (sRANKL-LAB). The biological activity of recombinant sRANKL was confirmed by observing RANK-RANKL signaling in vitro. M cell development in response to oral administration of recombinant L. lactis was determined by 1.51-fold higher immunohistochemical expression of M cell marker GP-2, compared to that of non-treatment group. In addition, an adjuvant effect of sRANKL was examined by immunization of mice with M-BmpB as a model antigen after treatment with sRANKL-LAB. Compared with the wild-type L. lactis group, the sRANKL-LAB group showed significantly increased systemic and mucosal immune responses specific to M-BmpB. CONCLUSIONS: Our results show that the M cell development by sRANKL-LAB can increase the antigen transcytotic capability of follicle-associated epithelium, and thereby enhance the mucosal immune response, which implies that oral administration of sRANKL is a promising adjuvant strategy for efficient oral vaccination.


Asunto(s)
Adyuvantes Inmunológicos , Expresión Génica , Lactococcus lactis/genética , Ligando RANK/genética , Vacunas/inmunología , Administración Oral , Animales , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones , Ganglios Linfáticos Agregados/citología , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Ligando RANK/administración & dosificación , Ligando RANK/inmunología , Ligando RANK/metabolismo , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Vacunas/administración & dosificación
8.
Mol Pharm ; 12(11): 3816-28, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26394158

RESUMEN

Orally ingested pathogens or antigens are taken up by microfold cells (M cells) in Peyer's patches of intestine to initiate protective immunity against infections. However, the uptake of orally delivered protein antigens through M cells is very low due to lack of specificity of proteins toward M cells and degradation of proteins in the harsh environment of gastrointestinal (GI) tract. To overcome these limitations, here we developed a pH-sensitive and mucoadhesive vehicle of thiolated eudragit (TE) microparticles to transport an M cell-targeting peptide-fused model protein antigen. Particularly, TE prolonged the particles transit time through the GI tract and predominantly released the proteins in ileum where M cells are abundant. Thus, oral delivery of TE microparticulate antigens exhibited high transcytosis of antigens through M cells resulting in strong protective sIgA as well as systemic IgG antibody responses. Importantly, the delivery system not only induced CD4(+) T cell immune responses but also generated strong CD8(+) T cell responses with enhanced production of IFN-γ in spleen. Given that M cells are considered a promising target for oral vaccination, this study could provide a new combinatorial method for the development of M-cell-targeted mucosal vaccines.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Adhesión Celular/inmunología , Sistemas de Liberación de Medicamentos , Mucosa Intestinal/metabolismo , Lipoproteínas/inmunología , Fragmentos de Péptidos/administración & dosificación , Vacunas de Subunidad/administración & dosificación , Resinas Acrílicas , Administración Oral , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Femenino , Citometría de Flujo , Intestinos/citología , Ensayo de Materiales , Ratones , Ratones Endogámicos BALB C , Microesferas , Fragmentos de Péptidos/inmunología , Polímeros/química , Vacunas de Subunidad/inmunología
9.
J Nanosci Nanotechnol ; 14(11): 8356-64, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25958528

RESUMEN

Receptor-mediated endocytosis is a promising approach of gene delivery into the target cells via receptor-ligand interaction. Vimentins at the cell surface are recently known to bind N-acetylglucosamine (GlcNAc) residue, therefore, the cell surfaces of vimentin-expressing cells could be targeted by using the GlcNAc residue as a specific ligand for receptor-mediated gene delivery. Here, we have developed polymeric gene delivery vectors, based on poly(ethylene oxide)(PEO) and poly(aspartamide), namely poly[(aspartamide)(diethylenetriamine)]-b-[PEO-(GlcNAc)] (PADPG) and poly[(aspartamide)(diethylenetriamine)]-b-[PEO] (PADP) to elucidate the efficiency of GlcNAc ligand for gene delivery through receptor mediated endocytosis. To determine the efficiency of these polymeric vectors for specific gene delivery, the DNA condensation ability of PADPG and PADP and the subsequent formation of polymeric nanoparticles were confirmed by gel retardation assay and transmission electron microscopy respectively. Both PADPG and PADP had lower cytotoxicity than polyethylenimine 25 K (PEI 25 K). However, their transfection efficiency was comparatively lower than PEI 25 K due to hydrophilic property of PEO in the vectors. To observe the stability of polymeric nanoparticles, the transfection of PADPG and PADP was carried out in the presence of serum. Favorably, the interfering effect of serum on the transfection efficiency of PADPG and PADP was also very low. Finally, when the cell specificity of these polymeric vectors was investigated, PADPG had high gene transfection in vimentin-expressing cells than vimentin-deficiency cells. The high transfection efficiency of PADPG was attributed to the GlcNAc in the polymeric vector which interact specifically with vimentin in the cells for the receptor-mediated endocytosis. The competitive inhibition assay further proved the receptor-mediated endocytosis of PADPG. Thus, this study demonstrates that conjugation of GlcNAc is an effective and rational way to prepare a suitable vector for targeted gene delivery to vimentin-expressing cells.


Asunto(s)
Acetilglucosamina/metabolismo , Endocitosis/fisiología , Nanopartículas/química , Receptores N-Acetilglucosamina/metabolismo , Transfección/métodos , Acetilglucosamina/química , Línea Celular Transformada , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Estabilidad de Medicamentos , Humanos , Nanopartículas/toxicidad , Polímeros/química , Vimentina/metabolismo
10.
Adv Drug Deliv Rev ; 208: 115237, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38447931

RESUMEN

Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.


Asunto(s)
Investigación Biomédica , Bioimpresión , Animales , Humanos , Bioimpresión/métodos , Imagenología Tridimensional , Reproducibilidad de los Resultados , Organoides , Ingeniería de Tejidos/métodos
11.
Adv Sci (Weinh) ; 11(7): e2304332, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38032118

RESUMEN

Microfluidic 3D cell culture devices that enable the recapitulation of key aspects of organ structures and functions in vivo represent a promising preclinical platform to improve translational success during drug discovery. Essential to these engineered devices is the spatial patterning of cells from different tissue types within a confined microenvironment. Traditional fabrication strategies lack the scalability, cost-effectiveness, and rapid prototyping capabilities required for industrial applications, especially for processes involving thermoplastic materials. Here, an approach to pattern fluid guides inside microchannels is introduced by establishing differential hydrophilicity using pressure-sensitive adhesives as masks and a subsequent selective coating with a biocompatible polymer. Optimal coating conditions are identified using polyvinylpyrrolidone, which resulted in rapid and consistent hydrogel flow in both the open-chip prototype and the fully bonded device containing additional features for medium perfusion. The suitability of the device for dynamic 3D cell culture is tested by growing human hepatocytes in the device under controlled fluid flow for a 14-day period. Additionally, the study demonstrated the potential of using the device for pharmaceutical high-throughput screening applications, such as predicting drug-induced liver injury. The approach offers a facile strategy of rapid prototyping thermoplastic microfluidic organ chips with varying geometries, microstructures, and substrate materials.


Asunto(s)
Hepatocitos , Microfluídica , Humanos , Microfluídica/métodos , Técnicas de Cultivo Tridimensional de Células , Hidrogeles
12.
Adv Mater ; 36(34): e2304846, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38252896

RESUMEN

Decellularized extracellular matrix (dECM)-based hydrogels are widely applied to additive biomanufacturing strategies for relevant applications. The extracellular matrix components and growth factors of dECM play crucial roles in cell adhesion, growth, and differentiation. However, the generally poor mechanical properties and printability have remained as major limitations for dECM-based materials. In this study, heart-derived dECM (h-dECM) and meniscus-derived dECM (Ms-dECM) bioinks in their pristine, unmodified state supplemented with the photoinitiator system of tris(2,2-bipyridyl) dichlororuthenium(II) hexahydrate and sodium persulfate, demonstrate cytocompatibility with volumetric bioprinting processes. This recently developed bioprinting modality illuminates a dynamically evolving light pattern into a rotating volume of the bioink, and thus decouples the requirement of mechanical strengths of bioprinted hydrogel constructs with printability, allowing for the fabrication of sophisticated shapes and architectures with low-concentration dECM materials that set within tens of seconds. As exemplary applications, cardiac tissues are volumetrically bioprinted using the cardiomyocyte-laden h-dECM bioink showing favorable cell proliferation, expansion, spreading, biomarker expressions, and synchronized contractions; whereas the volumetrically bioprinted Ms-dECM meniscus structures embedded with human mesenchymal stem cells present appropriate chondrogenic differentiation outcomes. This study supplies expanded bioink libraries for volumetric bioprinting and broadens utilities of dECM toward tissue engineering and regenerative medicine.


Asunto(s)
Bioimpresión , Matriz Extracelular Descelularizada , Hidrogeles , Tinta , Ingeniería de Tejidos , Bioimpresión/métodos , Hidrogeles/química , Animales , Matriz Extracelular Descelularizada/química , Ingeniería de Tejidos/métodos , Miocitos Cardíacos/citología , Andamios del Tejido/química , Proliferación Celular , Humanos , Materiales Biocompatibles/química , Matriz Extracelular/química , Matriz Extracelular/metabolismo
13.
Nat Commun ; 14(1): 210, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639727

RESUMEN

Volumetric additive manufacturing (VAM) enables fast photopolymerization of three-dimensional constructs by illuminating dynamically evolving light patterns in the entire build volume. However, the lack of bioinks suitable for VAM is a critical limitation. This study reports rapid volumetric (bio)printing of pristine, unmodified silk-based (silk sericin (SS) and silk fibroin (SF)) (bio)inks to form sophisticated shapes and architectures. Of interest, combined with post-fabrication processing, the (bio)printed SS constructs reveal properties including reversible as well as repeated shrinkage and expansion, or shape-memory; whereas the (bio)printed SF constructs exhibit tunable mechanical performances ranging from a few hundred Pa to hundreds of MPa. Both types of silk-based (bio)inks are cytocompatible. This work supplies expanded bioink libraries for VAM and provides a path forward for rapid volumetric manufacturing of silk constructs, towards broadened biomedical applications.


Asunto(s)
Bioimpresión , Fibroínas , Seda , Tinta , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido
14.
Appl Microbiol Biotechnol ; 93(2): 687-96, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21927992

RESUMEN

A number of structurally diverse natural products harboring pyrrole moieties possess a wide range of biological activities. Studies on biosynthesis of pyrrole ring have shown that pyrrole moieties are derived from L-proline. Nargenicin A(1), a saturated alicyclic polyketide from Nocardia sp. CS682, is a pyrrole-2-carboxylate ester of nodusmicin. We cloned and identified a set of four genes from Nocardia sp. CS682 that show sequence similarity to the respective genes involved in the biosynthesis of the pyrrole moieties of pyoluteorin in Pseudomonas fluorescens, clorobiocin in Streptomyces roseochromogenes subsp. Oscitans, coumermycin A(1) in Streptomyces rishiriensis, one of the pyrrole rings of undecylprodigiosin in Streptomyces coelicolor, and leupyrrins in Sorangium cellulosum. These genes were designated as ngnN4, ngnN5, ngnN3, and ngnN2. In this study, we presented the evidences that the pyrrole moiety of nargenicin A(1) was also derived from L-proline by the coordinated action of three proteins, NgnN4 (proline adenyltransferase), NgnN5 (proline carrier protein), and NgnN3 (flavine-dependent acyl-coenzyme A dehydrogenases). Biosynthesis of pyrrole moiety in nargenicin A(1) is initiated by NgnN4 that catalyzes ATP-dependent activation of L-proline into L-prolyl-AMP, and the latter is transferred to NgnN5 to create prolyl-S-peptidyl carrier protein (PCP). Later, NgnN3 catalyzes the two-step oxidation of prolyl-S-PCP into pyrrole-2-carboxylate. Thus, this study presents another example of a pyrrole moiety biosynthetic pathway that uses a set of three genes to convert L-proline into pyrrole-2-carboxylic acid moiety.


Asunto(s)
Vías Biosintéticas/genética , Nocardia/metabolismo , Pirroles/metabolismo , Acil-CoA Deshidrogenasa/genética , Acil-CoA Deshidrogenasa/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Genes Bacterianos , Lactonas/metabolismo , Nocardia/genética , Prolina/metabolismo , Transferasas/genética , Transferasas/metabolismo
15.
Biomaterials ; 280: 121302, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894584

RESUMEN

Monotherapy with a single chemotherapeutic regimen has met with significant hurdles in terms of clinical efficacy. The complexity of cancer accentuates the need for an alternative approach with a combination of two or more therapeutic regimens to win the battle. However, it is still a challenge to develop a successful combination of drugs with high efficiency and low toxicity to control cancer growth. While gemcitabine monotherapy remains a choice of standard treatment for advanced breast cancer, the approach has not prolonged the median survival time of metastatic breast cancer patients. Here, we report a hyaluronic acid (HA)-based drug combination of gemcitabine (GEM) with imiquimod (IMQ) to stimulate immune cells for anticancer activity. Treatment of the drug combination (IMQ-HA-GEM) showed enhanced anticancer activity against 4T1 breast tumor cells in vitro. Our study with a microfluidics-based 3D, compartmentalized cancer model showed that infiltration of THP-1 monocytes occurred particularly at the site of cancer cells treated with IMQ-HA-GEM. Moreover, IMQ-HA-GEM significantly suppressed the volume of 4T1 breast tumor of mice in vivo. Flow cytometry study displayed a significantly higher activation of CD11b+ immune cells in the blood of mice treated with IMQ-HA-GEM, whereas immunohistochemistry study revealed greater prevalence of CD68+ tumor-associated macrophages in the tumor. Histological examination of isolated tumors of mice treated with IMQ-HA-GEM further confirmed the efficacy of drug combination on cancer cells. This study supports the conclusion that imiquimod potentiates the effect of gemcitabine by activating immune cells to suppress tumors in the form of combination nanoparticles.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Animales , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Femenino , Humanos , Imiquimod/uso terapéutico , Ratones , Gemcitabina
16.
Methods Mol Biol ; 2375: 61-75, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34591299

RESUMEN

Three-dimensional bioprinting represents promising approach for fabricating standalone and perfusable vascular conduits using biocompatible materials. Here we describe a step-by-step method by using a multichannel coaxial extrusion system (MCCES) and a blend bioink constituting gelatin methacryloyl, sodium alginate, and eight-arm poly(ethylene glycol)-acrylate with a tripentaerythritol core for the fabrication of standalone circumferentially multilayered hollow tubes. This microfluidic bioprinting method allows the fabrication of perfusable vascular conduits with a core lumen, an inner endothelial layer resembling the tunica intima, and an outer smooth muscle cell layer resembling the tunica media of the blood vessel. Biocompatible and perfusable blood vessels with a widely tunable size range in terms of luminal diameters and wall thicknesses can be successfully fabricated using the MCCES.


Asunto(s)
Bioimpresión , Gelatina , Metacrilatos , Microfluídica , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
17.
Matter ; 5(2): 573-593, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35695821

RESUMEN

One significant drawback of existing bioprinted tissues is their lack of shelf-availability caused by complications in both fabrication and storage. Here, we report a cryobioprinting strategy for simultaneously fabricating and storing cell-laden volumetric tissue constructs through seamlessly combining extrusion bioprinting and cryopreservation. The cryobioprinting performance was investigated by designing, fabricating, and storing cell-laden constructs made of our optimized cryoprotective gelatin-based bioinks using a freezing plate with precisely controllable temperature. The in situ freezing process further promoted the printability of cell-laden hydrogel bioinks to achieve freeform structures otherwise inconvenient with direct extrusion bioprinting. The effects of bioink composition on printability and cell viability were evaluated. The functionality of the method was finally investigated using cell differentiation and chick ex ovo assays. The results confirmed the feasibility and efficacy of cryobioprinting as a single-step method for concurrent tissue biofabrication and storage.

18.
Adv Healthc Mater ; 11(9): e2102411, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34860472

RESUMEN

The 3D bioprinting technologies have attracted increasing attention due to their flexibility in producing architecturally relevant tissue constructs. Here, a vertical embedded extrusion bioprinting strategy using uniaxial or coaxial nozzles is presented, which allows formation of vertical structures of homogeneous or heterogeneous properties. By adjusting the bioprinting parameters, the characteristics of the bioprinted vertical patterns can be precisely controlled. Using this strategy, two proof-of-concept applications in tissue biofabrication are demonstrated. Specifically, intestinal villi and hair follicles, two liner-shaped tissues in the human body, are successfully generated with the vertical embedded bioprinting method, reconstructing some of their key structures as well as restoring partial functions in vitro. Caco-2 cells in the bioprinted intestinal villus constructs proliferated and aggregated properly, also showing functional biomarker expressions such as ZO-1 and villin. Moreover, preliminary hair follicle structures featuring keratinized human keratinocytes and spheroid-shaped human dermal papilla cells are formed after vertical bioprinting and culturing. In summary, this vertical embedded extrusion bioprinting technique harnessing a uniaxial or coaxial format will likely bring further improvements in the reconstruction of certain human tissues and organs, especially those with a linear structure, potentially leading to wide utilities in tissue engineering, tissue model engineering, and drug discovery.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Células CACO-2 , Humanos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
19.
IEEE Trans Biomed Circuits Syst ; 16(6): 1057-1074, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36417722

RESUMEN

The article presents a fully integrated multimodal and multifunctional CMOS biosensing/actuating array chip and system for multi-dimensional cellular/tissue characterization. The CMOS chip supports up to 1,568 simultaneous parallel readout channels across 21,952 individually addressable multimodal pixels with 13 µm × 13 µm 2-D pixel pitch along with 1,568 Pt reference electrodes. These features allow the CMOS array chip to perform multimodal physiological measurements on living cell/tissue samples with both high throughput and single-cell resolution. Each pixel supports three sensing and one actuating modalities, each reconfigurable for different functionalities, in the form of full array (FA) or fast scan (FS) voltage recording schemes, bright/dim optical detection, 2-/4-point impedance sensing (ZS), and biphasic current stimulation (BCS) with adjustable stimulation area for single-cell or tissue-level stimulation. Each multi-modal pixel contains an 8.84 µm × 11 µm Pt electrode, 4.16 µm × 7.2 µm photodiode (PD), and in-pixel circuits for PD measurements and pixel selection. The chip is fabricated in a standard 130nm BiCMOS process as a proof of concept. The on-chip electrodes are constructed by unique design and in-house post-CMOS fabrication processes, including a critical Al shorting of all pixels during fabrication and Al etching after fabrication that ensures a high-yield planar electrode array on CMOS with high biocompatibility and long-term measurement reliability. For demonstration, extensive biological testing is performed with human and mouse progenitor cells, in which multidimensional biophysiological data are acquired for comprehensive cellular characterization.


Asunto(s)
Técnicas Biosensibles , Ratones , Animales , Humanos , Reproducibilidad de los Resultados , Electrodos , Semiconductores
20.
Sci Adv ; 8(43): eabq6900, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36288300

RESUMEN

Three-dimensional (3D) bioprinting of vascular tissues that are mechanically and functionally comparable to their native counterparts is an unmet challenge. Here, we developed a tough double-network hydrogel (bio)ink for microfluidic (bio)printing of mono- and dual-layered hollow conduits to recreate vein- and artery-like tissues, respectively. The tough hydrogel consisted of energy-dissipative ionically cross-linked alginate and elastic enzyme-cross-linked gelatin. The 3D bioprinted venous and arterial conduits exhibited key functionalities of respective vessels including relevant mechanical properties, perfusability, barrier performance, expressions of specific markers, and susceptibility to severe acute respiratory syndrome coronavirus 2 pseudo-viral infection. Notably, the arterial conduits revealed physiological vasoconstriction and vasodilatation responses. We further explored the feasibility of these conduits for vascular anastomosis. Together, our study presents biofabrication of mechanically and functionally relevant vascular conduits, showcasing their potentials as vascular models for disease studies in vitro and as grafts for vascular surgeries in vivo, possibly serving broad biomedical applications in the future.


Asunto(s)
Bioimpresión , COVID-19 , Humanos , Bioimpresión/métodos , Hidrogeles , Gelatina , Microfluídica , Ingeniería de Tejidos/métodos , Impresión Tridimensional , Alginatos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA