Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(5): 1238-1254, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27118425

RESUMEN

Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer. We also developed protocols for midbrain and hypothalamic organoids. Finally, we employed the forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed preferential, productive infection of neural progenitors with either African or Asian ZIKV strains. ZIKV infection leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell-layer volume resembling microcephaly. Together, our brain-region-specific organoids and SpinΩ provide an accessible and versatile platform for modeling human brain development and disease and for compound testing, including potential ZIKV antiviral drugs.


Asunto(s)
Encéfalo/citología , Técnicas de Cultivo de Célula , Modelos Biológicos , Organoides , Virus Zika/fisiología , Reactores Biológicos , Técnicas de Cultivo de Célula/economía , Embrión de Mamíferos , Desarrollo Embrionario , Humanos , Células Madre Pluripotentes Inducidas , Neurogénesis , Neuronas/citología , Organoides/virología , Infección por el Virus Zika/fisiopatología , Infección por el Virus Zika/virología
2.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35017298

RESUMEN

Neurons derived from human induced pluripotent stem cells (hiPSCs) have been used to model basic cellular aspects of neuropsychiatric disorders, but the relationship between the emergent phenotypes and the clinical characteristics of donor individuals has been unclear. We analyzed RNA expression and indices of cellular function in hiPSC-derived neural progenitors and cortical neurons generated from 13 individuals with high polygenic risk scores (PRSs) for schizophrenia (SCZ) and a clinical diagnosis of SCZ, along with 15 neurotypical individuals with low PRS. We identified electrophysiological measures in the patient-derived neurons that implicated altered Na+ channel function, action potential interspike interval, and gamma-aminobutyric acid-ergic neurotransmission. Importantly, electrophysiological measures predicted cardinal clinical and cognitive features found in these SCZ patients. The identification of basic neuronal physiological properties related to core clinical characteristics of illness is a potentially critical step in generating leads for novel therapeutics.


Asunto(s)
Cognición/fisiología , Fenómenos Electrofisiológicos , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Esquizofrenia/fisiopatología , Animales , Línea Celular , Reprogramación Celular , Corteza Cerebral/patología , Humanos , Activación del Canal Iónico , Cinética , Masculino , Fenotipo , Ratas , Esquizofrenia/diagnóstico , Canales de Sodio/metabolismo
3.
Mol Psychiatry ; 28(1): 76-82, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36224259

RESUMEN

Pitt Hopkins Syndrome (PTHS) is a rare syndromic form of autism spectrum disorder (ASD) caused by autosomal dominant mutations in the Transcription Factor 4 (TCF4) gene. TCF4 is a basic helix-loop-helix transcription factor that is critical for neurodevelopment and brain function through its binding to cis-regulatory elements of target genes. One potential therapeutic strategy for PTHS is to identify dysregulated target genes and normalize their dysfunction. Here, we propose that SCN10A is an important target gene of TCF4 that is an applicable therapeutic approach for PTHS. Scn10a encodes the voltage-gated sodium channel Nav1.8 and is consistently shown to be upregulated in PTHS mouse models. In this perspective, we review prior literature and present novel data that suggests inhibiting Nav1.8 in PTHS mouse models is effective at normalizing neuron function, brain circuit activity and behavioral abnormalities and posit this therapeutic approach as a treatment for PTHS.


Asunto(s)
Discapacidad Intelectual , Canal de Sodio Activado por Voltaje NAV1.8 , Animales , Ratones , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Facies , Hiperventilación/genética , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Factor de Transcripción 4/genética , Canal de Sodio Activado por Voltaje NAV1.8/química , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo
4.
Mol Psychiatry ; 28(11): 4679-4692, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770578

RESUMEN

Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor that is implicated in a variety of psychiatric disorders including autism spectrum disorder (ASD), major depression, and schizophrenia. Autosomal dominant mutations in TCF4 are causal for a specific ASD called Pitt-Hopkins Syndrome (PTHS). However, our understanding of etiological and pathophysiological mechanisms downstream of TCF4 mutations is incomplete. Single cell sequencing indicates TCF4 is highly expressed in GABAergic interneurons (INs). Here, we performed cell-type specific expression analysis (CSEA) and cellular deconvolution (CD) on bulk RNA sequencing data from 5 different PTHS mouse models. Using CSEA we observed differentially expressed genes (DEGs) were enriched in parvalbumin expressing (PV+) INs and CD predicted a reduction in the PV+ INs population. Therefore, we investigated the role of TCF4 in regulating the development and function of INs in the Tcf4+/tr mouse model of PTHS. In Tcf4+/tr mice, immunohistochemical (IHC) analysis of subtype-specific IN markers and reporter mice identified reductions in PV+, vasoactive intestinal peptide (VIP+), and cortistatin (CST+) expressing INs in the cortex and cholinergic (ChAT+) INs in the striatum, with the somatostatin (SST+) IN population being spared. The reduction of these specific IN populations led to cell-type specific alterations in the balance of excitatory and inhibitory inputs onto PV+ and VIP+ INs and excitatory pyramidal neurons within the cortex. These data indicate TCF4 is a critical regulator of the development of specific subsets of INs and highlight the inhibitory network as an important source of pathophysiology in PTHS.


Asunto(s)
Trastorno del Espectro Autista , Animales , Ratones , Corteza Cerebral/metabolismo , Interneuronas/metabolismo , Mutación , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo
5.
Brain ; 146(8): 3331-3346, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068912

RESUMEN

Pitt-Hopkins syndrome is an autism spectrum disorder caused by autosomal dominant mutations in the human transcription factor 4 gene (TCF4). One pathobiological process caused by murine Tcf4 mutation is a cell autonomous reduction in oligodendrocytes and myelination. In this study, we show that the promyelinating compounds, clemastine, sobetirome and Sob-AM2 are effective at restoring myelination defects in a Pitt-Hopkins syndrome mouse model. In vitro, clemastine treatment reduced excess oligodendrocyte precursor cells and normalized oligodendrocyte density. In vivo, 2-week intraperitoneal administration of clemastine also normalized oligodendrocyte precursor cell and oligodendrocyte density in the cortex of Tcf4 mutant mice and appeared to increase the number of axons undergoing myelination, as EM imaging of the corpus callosum showed a significant increase in the proportion of uncompacted myelin and an overall reduction in the g-ratio. Importantly, this treatment paradigm resulted in functional rescue by improving electrophysiology and behaviour. To confirm behavioural rescue was achieved via enhancing myelination, we show that treatment with the thyroid hormone receptor agonist sobetirome or its brain penetrating prodrug Sob-AM2, was also effective at normalizing oligodendrocyte precursor cell and oligodendrocyte densities and behaviour in the Pitt-Hopkins syndrome mouse model. Together, these results provide preclinical evidence that promyelinating therapies may be beneficial in Pitt-Hopkins syndrome and potentially other neurodevelopmental disorders characterized by dysmyelination.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Humanos , Animales , Ratones , Clemastina , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Preparaciones Farmacéuticas , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética
6.
BMC Neurosci ; 23(1): 71, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451089

RESUMEN

BACKGROUND: Calcium imaging is a powerful technique for recording cellular activity across large populations of neurons. However, analysis methods capable of single-cell resolution in cultured neurons, especially for cultures derived from human induced pluripotent stem cells (hiPSCs), are lacking. Existing methods lack scalability to accommodate high-throughput comparisons between multiple lines, across developmental timepoints, or across pharmacological manipulations. RESULTS: To address this need we developed CaPTure, a scalable, automated Ca2+ imaging analysis pipeline ( https://github.com/LieberInstitute/CaPTure ). CaPTuredetects neurons, classifies and quantifies spontaneous activity, quantifies synchrony metrics, and generates cell- and network-specific metrics that facilitate phenotypic discovery. The method is compatible with parallel processing on computing clusters without requiring significant user input or parameter modification. CONCLUSION: CaPTure allows for rapid assessment of neuronal activity in cultured cells at cellular resolution, rendering it amenable to high-throughput screening and phenotypic discovery. The platform can be applied to both human- and rodent-derived neurons and is compatible with many imaging systems.


Asunto(s)
Calcio , Células Madre Pluripotentes Inducidas , Humanos , Neuronas , Procesamiento de Imagen Asistido por Computador , Línea Celular
7.
Dev Neurosci ; 43(3-4): 159-167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34134113

RESUMEN

Transcription factor 4 (TCF4, also known as ITF2 or E2-2) is a type I basic helix-loop-helix transcription factor. Autosomal dominant mutations in TCF4 cause Pitt-Hopkins syndrome (PTHS), a rare syndromic form of autism spectrum disorder. In this review, we provide an update on the progress regarding our understanding of TCF4 function at the molecular, cellular, physiological, and behavioral levels with a focus on phenotypes and therapeutic interventions. We examine upstream and downstream regulatory networks associated with TCF4 and discuss a range of in vitro and in vivo data with the aim of understanding emerging TCF4-specific mechanisms relevant for disease pathophysiology. In conclusion, we provide comments about exciting future avenues of research that may provide insights into potential new therapeutic targets for PTHS.


Asunto(s)
Facies , Hiperventilación , Discapacidad Intelectual/genética , Factor de Transcripción 4 , Trastorno del Espectro Autista/genética , Humanos , Hiperventilación/genética , Factor de Transcripción 4/genética
8.
Mol Psychiatry ; 24(8): 1235-1246, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30705426

RESUMEN

The TCF4 gene is the subject of numerous and varied investigations of it's role in the genesis of neuropsychiatric disease. The gene has been identified as the cause of Pitt-Hopkins syndrome (PTHS) and it has been implicated in various other neuropsychiatric diseases, including schizophrenia, depression, and autism. However, the precise molecular mechanisms of the gene's involvement in neurogenesis, particularly, corticogenesis, are not well understood. Here, we present data showing that TCF4 is expressed in a region-specific manner in the radial glia and stem cells of transient embryonic zones at early gestational ages in both humans and mice. TCF4 haploinsufficiency mice exhibit a delay in neuronal migration, and a significant increase in the number of upper-layer cortical neurons, as well as abnormal dendrite and synapse formation. Our research also reveals that TCF3 up-regulates Tcf4 by binding to the specific "E-box" and its flank sequence in intron 2 of the Tcf4 gene. Additionally, our transcriptome study substantiates that Tcf4 transcriptional function is essential for locomotion, cognition, and learning. By activating expression of TCF4 in the regulation of neuronal proliferation and migration to the overlaying neocortex and subsequent differentiation leading to laminar formation TCF4 fulfills its normal function, but if not, abnormalities such as those reported here result. These findings provide new insight into the specific roles of Tcf4 molecular pathway in neocortical development and their relevance in the pathogenesis of neuropsychiatric diseases.


Asunto(s)
Malformaciones del Desarrollo Cortical/genética , Trastornos Mentales/genética , Factor de Transcripción 4/genética , Animales , Modelos Animales de Enfermedad , Células Ependimogliales/metabolismo , Femenino , Redes Reguladoras de Genes/genética , Haploinsuficiencia , Humanos , Masculino , Ratones , Ratones Noqueados , Neurogénesis/fisiología , Neuronas/metabolismo , Fenotipo , Esquizofrenia/genética , Factor de Transcripción 4/metabolismo , Factores de Transcripción/genética
9.
Development ; 143(15): 2741-52, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385014

RESUMEN

The polarity and organization of radial glial cells (RGCs), which serve as both stem cells and scaffolds for neuronal migration, are crucial for cortical development. However, the cytoskeletal mechanisms that drive radial glial outgrowth and maintain RGC polarity remain poorly understood. Here, we show that the Arp2/3 complex - the unique actin nucleator that produces branched actin networks - plays essential roles in RGC polarity and morphogenesis. Disruption of the Arp2/3 complex in murine RGCs retards process outgrowth toward the basal surface and impairs apical polarity and adherens junctions. Whereas the former is correlated with an abnormal actin-based leading edge, the latter is consistent with blockage in membrane trafficking. These defects result in altered cell fate, disrupted cortical lamination and abnormal angiogenesis. In addition, we present evidence that the Arp2/3 complex is a cell-autonomous regulator of neuronal migration. Our data suggest that Arp2/3-mediated actin assembly might be particularly important for neuronal cell motility in a soft or poorly adhesive matrix environment.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Células Ependimogliales/citología , Complejo 2-3 Proteico Relacionado con la Actina/genética , Animales , Apoptosis/genética , Apoptosis/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Polaridad Celular/genética , Polaridad Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Ependimogliales/metabolismo , Ratones , Morfogénesis/genética , Morfogénesis/fisiología , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/citología , Neuronas/metabolismo
10.
J Neurosci ; 37(43): 10516-10527, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-28951451

RESUMEN

Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt-Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders.SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/metabolismo , Discapacidad Intelectual/metabolismo , Neuronas/metabolismo , Esquizofrenia/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de Unión al ADN/genética , Femenino , Células HEK293 , Hipocampo/metabolismo , Humanos , Discapacidad Intelectual/genética , Masculino , Ratas , Ratas Sprague-Dawley , Esquizofrenia/genética , Factor de Transcripción 4 , Factores de Transcripción/genética
11.
Development ; 139(13): 2299-307, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22627280

RESUMEN

NG2-expressing cells (NG2 cells or polydendrocytes) generate oligodendrocytes throughout the CNS and a subpopulation of protoplasmic astrocytes in the gray matter of the ventral forebrain. The mechanisms that regulate their oligodendrocyte or astrocyte fate and the degree to which they exhibit lineage plasticity in vivo have remained unclear. The basic helix-loop-helix transcription factor Olig2 is required for oligodendrocyte specification and differentiation. We have found that Olig2 expression is spontaneously downregulated in NG2 cells in the normal embryonic ventral forebrain as they differentiate into astrocytes. To further examine the role of Olig2 in NG2 cell fate determination, we used genetic fate mapping of NG2 cells in constitutive and tamoxifen-inducible Olig2 conditional knockout mice in which Olig2 was deleted specifically in NG2 cells. Constitutive deletion of Olig2 in NG2 cells in the neocortex and corpus callosum but not in ventral forebrain caused them to convert their fate into astrocytes, with a concomitant severe reduction in the number of oligodendrocytes and myelin. Deletion of Olig2 in NG2 cells in perinatal mice also resulted in astrocyte generation from neocortical NG2 cells. These observations indicate that the developmental fate of NG2 cells can be switched by altering a single transcription factor Olig2.


Asunto(s)
Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/metabolismo , Animales , Antígenos/análisis , Diferenciación Celular , Linaje de la Célula , Cuerpo Calloso/crecimiento & desarrollo , Cuerpo Calloso/metabolismo , Regulación hacia Abajo , Femenino , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Proteoglicanos/análisis
12.
Biol Psychiatry ; 95(7): 662-675, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37573005

RESUMEN

BACKGROUND: Genetic variation in the TCF4 (transcription factor 4) gene is associated with risk for a variety of developmental and psychiatric conditions, which includes a syndromic form of autism spectrum disorder called Pitt-Hopkins syndrome (PTHS). TCF4 encodes an activity-dependent transcription factor that is highly expressed during cortical development and in animal models has been shown to regulate various aspects of neuronal development and function. However, our understanding of how disease-causing mutations in TCF4 confer pathophysiology in a human context is lacking. METHODS: To model PTHS, we differentiated human cortical neurons from human induced pluripotent stem cells that were derived from patients with PTHS and neurotypical individuals. To identify pathophysiology and disease mechanisms, we assayed cortical neurons with whole-cell electrophysiology, Ca2+ imaging, multielectrode arrays, immunocytochemistry, and RNA sequencing. RESULTS: Cortical neurons derived from patients with TCF4 mutations showed deficits in spontaneous synaptic transmission, network excitability, and homeostatic plasticity. Transcriptomic analysis indicated that these phenotypes resulted in part from altered expression of genes involved in presynaptic neurotransmission and identified the presynaptic binding protein RIMBP2 as the most differentially expressed gene in PTHS neurons. Remarkably, TCF4-dependent deficits in spontaneous synaptic transmission and network excitability were rescued by increasing RIMBP2 expression in presynaptic neurons. CONCLUSIONS: Taken together, these results identify TCF4 as a critical transcriptional regulator of human synaptic development and plasticity and specifically identifies dysregulation of presynaptic function as an early pathophysiology in PTHS.


Asunto(s)
Trastorno del Espectro Autista , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual , Animales , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mutación , Neuronas/metabolismo , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo
13.
Front Cell Neurosci ; 17: 1322813, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38273973

RESUMEN

Oligodendrocytes play a crucial role in our central nervous system (CNS) by myelinating axons for faster action potential conduction, protecting axons from degeneration, structuring the position of ion channels, and providing nutrients to neurons. Oligodendrocyte dysfunction and/or dysmyelination can contribute to a range of neurodegenerative diseases and neuropsychiatric disorders such as Multiple Sclerosis (MS), Leukodystrophy (LD), Schizophrenia (SCZ), and Autism Spectrum Disorder (ASD). Common characteristics identified across these disorders were either an inability of oligodendrocytes to remyelinate after degeneration or defects in oligodendrocyte development and maturation. Unfortunately, the causal mechanisms of oligodendrocyte dysfunction are still uncertain, and therapeutic targets remain elusive. Many studies rely on the use of animal models to identify the molecular and cellular mechanisms behind these disorders, however, such studies face species-specific challenges and therefore lack translatability. The use of human induced pluripotent stem cells (hiPSCs) to model neurological diseases is becoming a powerful new tool, improving our understanding of pathophysiology and capacity to explore therapeutic targets. Here, we focus on the application of hiPSC-derived oligodendrocyte model systems to model disorders caused by oligodendrocyte dysregulation.

14.
Genes (Basel) ; 14(1)2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36672919

RESUMEN

The polygenic nature of schizophrenia (SCZ) implicates many variants in disease development. Rare variants of high penetrance have been shown to contribute to the disease prevalence. Whole-exome sequencing of a large three-generation family with SCZ and bipolar disorder identified a single segregating novel, rare, non-synonymous variant in the gene CASKIN1. The variant D1204N is absent from all databases, and CASKIN1 has a gnomAD missense score Z = 1.79 and pLI = 1, indicating its strong intolerance to variation. We find that introducing variants in the proline-rich region where the D1204N resides results in significant cellular changes in iPSC-derived neurons, consistent with CASKIN1's known functions. We observe significant transcriptomic changes in 368 genes (padj < 0.05) involved in neuronal differentiation and nervous system development. We also observed nominally significant changes in the frequency of action potentials during differentiation, where the speed at which the edited and unedited cells reach the same level of activity differs. Our results suggest that CASKIN1 is an excellent gene candidate for psychosis development with high penetrance in this family.


Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Esquizofrenia , Humanos , Predisposición Genética a la Enfermedad , Trastornos Psicóticos/genética , Esquizofrenia/genética , Trastorno Bipolar/genética , Prolina/genética , Proteínas del Tejido Nervioso/genética , Proteínas Adaptadoras Transductoras de Señales/genética
15.
Am J Psychiatry ; 180(4): 305-317, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36128683

RESUMEN

OBJECTIVE: Deficits in social cognition consistently underlie functional disabilities in a wide range of psychiatric disorders. Neuroimaging studies have suggested that the anterior insula is a "common core" brain region that is impaired across neurological and psychiatric disorders, which include social cognition deficits. Nevertheless, neurobiological mechanisms of the anterior insula for social cognition remain elusive. This study aims to fill this knowledge gap. METHODS: To determine the role of the anterior insula in social cognition, the authors manipulated expression of Cyp26B1, an anterior insula-enriched molecule that is crucial for retinoic acid degradation and is involved in the pathology of neuropsychiatric conditions. Social cognition was mainly assayed using the three-chamber social interaction test. Multimodal analyses were conducted at the molecular, cellular, circuitry, and behavioral levels. RESULTS: At the molecular and cellular level, anterior insula-mediated social novelty recognition is maintained by proper activity of the layer 5 pyramidal neurons, for which retinoic acid-mediated gene transcription can play a role. The authors also demonstrate that oxytocin influences the anterior insula-mediated social novelty recognition, although not by direct projection of oxytocin neurons, nor by direct diffusion of oxytocin to the anterior insula, which contrasts with the modes of oxytocin regulation onto the posterior insula. Instead, oxytocin affects oxytocin receptor-expressing neurons in the dorsal raphe nucleus, where serotonergic neurons are projected to the anterior insula. Furthermore, the authors show that serotonin 5-HT2C receptor expressed in the anterior insula influences social novelty recognition. CONCLUSIONS: The anterior insula plays a pivotal role in social novelty recognition that is partly regulated by a local retinoic acid cascade but also remotely regulated by oxytocin via a long-range circuit mechanism.


Asunto(s)
Oxitocina , Conducta Social , Humanos , Oxitocina/metabolismo , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo
16.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36712024

RESUMEN

Genetic variation in the transcription factor 4 ( TCF4) gene is associated with risk for a variety of developmental and psychiatric conditions, which includes a syndromic form of ASD called Pitt Hopkins Syndrome (PTHS). TCF4 encodes an activity-dependent transcription factor that is highly expressed during cortical development and in animal models is shown to regulate various aspects of neuronal development and function. However, our understanding of how disease-causing mutations in TCF4 confer pathophysiology in a human context is lacking. Here we show that cortical neurons derived from patients with TCF4 mutations have deficits in spontaneous synaptic transmission, network excitability and homeostatic plasticity. Transcriptomic analysis indicates these phenotypes result from altered expression of genes involved in presynaptic neurotransmission and identifies the presynaptic binding protein, RIMBP2 as the most differentially expressed gene in PTHS neurons. Remarkably, TCF4-dependent deficits in spontaneous synaptic transmission and network excitability were rescued by increasing RIMBP2 expression in presynaptic neurons. Together, these results identify TCF4 as a critical transcriptional regulator of human synaptic development and plasticity and specifically identifies dysregulation of presynaptic function as an early pathophysiology in PTHS.

17.
Sci Adv ; 9(15): eade2812, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058565

RESUMEN

Schizophrenia is a neurodevelopmental brain disorder whose genetic risk is associated with shifting clinical phenomena across the life span. We investigated the convergence of putative schizophrenia risk genes in brain coexpression networks in postmortem human prefrontal cortex (DLPFC), hippocampus, caudate nucleus, and dentate gyrus granule cells, parsed by specific age periods (total N = 833). The results support an early prefrontal involvement in the biology underlying schizophrenia and reveal a dynamic interplay of regions in which age parsing explains more variance in schizophrenia risk compared to lumping all age periods together. Across multiple data sources and publications, we identify 28 genes that are the most consistently found partners in modules enriched for schizophrenia risk genes in DLPFC; twenty-three are previously unidentified associations with schizophrenia. In iPSC-derived neurons, the relationship of these genes with schizophrenia risk genes is maintained. The genetic architecture of schizophrenia is embedded in shifting coexpression patterns across brain regions and time, potentially underwriting its shifting clinical presentation.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Encéfalo , Corteza Prefrontal , Núcleo Caudado
18.
Proc Natl Acad Sci U S A ; 106(39): 16865-70, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19805387

RESUMEN

Spontaneous and patterned activity, largely attributed to chemical transmission, shape the development of virtually all neural circuits. However, electrical transmission also has an important role in coordinated activity in the brain. In the olfactory bulb, gap junctions between apical dendrites of mitral cells increase excitability and synchronize firing within each glomerulus. We report here that the development of the glomerular microcircuit requires both sensory experience and connexin (Cx)36-mediated gap junctions. Coupling coefficients, which measure electrical coupling between mitral cell dendrites, were high in young mice, but decreased after postnatal day (P)10 because of a maturational increase in membrane conductance. Sensory deprivation, induced by unilateral naris occlusion at birth, slowed the morphological development of mitral cells and arrested the maturational changes in membrane conductance and coupling coefficients. As the coupling coefficients decreased in normal mice, a glutamate-mediated excitatory postsynaptic current (EPSC) between mitral cells emerged by P30. Although mitral-mitral EPSCs were generally unidirectional, they were not present in young adult Cx36(-/-) mice, suggesting that gap junctions are required for the development and/or function of the mature circuit. The experience-dependent transition from electrical transmission to combined chemical and electrical transmission provides a previously unappreciated mechanism that may tune the response properties of the glomerular microcircuit.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Animales , Conexinas/genética , Conexinas/metabolismo , Dendritas/metabolismo , Uniones Comunicantes , Ratones , Ratones Transgénicos , Bulbo Olfatorio/crecimiento & desarrollo , Vías Olfatorias , Transmisión Sináptica/fisiología , Proteína delta-6 de Union Comunicante
19.
Biol Psychiatry ; 90(6): 362-372, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34176589

RESUMEN

A key challenge in psychiatry research is the development of high-fidelity model systems that can be experimentally manipulated to explore and test pathophysiological mechanisms of illness. In this respect, the emerging capacity to derive neural cells and circuits from human induced pluripotent stem cells (iPSCs) has generated significant excitement. This review aims to provide a critical appraisal of the potential for iPSCs in illuminating pathophysiological mechanisms in the context of other available technical approaches. We discuss the selection of iPSC phenotypes relevant to psychiatry, the information that researchers can draw on to help guide these decisions, and how researchers choose between the use of 2-dimensional cultures and the use of more complex 3-dimensional model systems. We discuss the strengths and limitations of current models and the challenges and opportunities that they present. Finally, we discuss the potential of iPSC-based model systems for clarifying the mechanisms underlying genetic risk for psychiatry and the steps that will be needed to ensure that robust and reliable conclusions can be drawn. We argue that while iPSC-based models are ideally placed to study fundamental processes occurring within and between neural cells, they are often less well suited for case-control studies, given issues relating to statistical power and the challenges in identifying which cellular phenotypes are meaningful at the level of the whole individual. Our aim is to highlight the importance of considering the hypotheses of a given study to guide decisions about which, if any, iPSC-based system is most appropriate to address it.


Asunto(s)
Células Madre Pluripotentes Inducidas , Psiquiatría , Humanos , Modelos Biológicos , Neuronas , Fenotipo
20.
Neuron ; 105(3): 398-399, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32027827

RESUMEN

In this issue of Neuron, Dong et al. (2020) finds that deficiency of the psychiatric risk gene Cul3, which encodes an E3 ubiquitin ligase, leads to an upregulation of Cap-dependent protein translation. The resulting imbalance in protein synthesis and degradation is found to disrupt glutamatergic transmission and excitability in networks that underlie sociability and anxiety.


Asunto(s)
Proteínas Cullin , Trastornos Mentales , Ansiedad , Humanos , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA