Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 19(2): 243-5, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15548588

RESUMEN

Testosterone production surges during puberty and orchestrates massive growth and reorganization of the prostate gland, and this glandular architecture is maintained thereafter throughout adulthood. Benign prostatic hyperplasia (BPH) and prostate adenocarcinoma (PCA) are common diseases in adulthood that do not develop in the absence of androgens. Our objective was to gain insight into gene expression changes of the prostate gland at puberty, a crucial juncture in prostate development that is androgen dependent. Understanding the role played by androgens in normal prostate development may provide greater insight into androgen involvement in prostatic diseases. Benign prostate tissues obtained from pubertal and adult age group cadaveric organ donors were harvested and profiled using 20,000 element cDNA microarrays. Statistical analysis of the microarray data identified 375 genes that were differentially expressed in pubertal prostates relative to adult prostates including genes such as Nkx3.1, TMEPAI, TGFBR3, FASN, ANKH, TGFBR2, FAAH, S100P, HoxB13, fibronectin, and TSC2 among others. Comparisons of pubertal and BPH expression profiles revealed a subset of genes that shared the expression pattern between the two groups. In addition, we observed that several genes from this list were previously demonstrated to be regulated by androgen and hence could also be potential in vivo targets of androgen action in the pubertal human prostate. Promoter searches revealed the presence of androgen response elements in a cohort of genes including tumor necrosis factor-alpha induced adipose related protein, which was found to be induced by androgen. In summary, this is the first report that provides a comprehensive view of the molecular events that occur during puberty in the human prostate and provides a cohort of genes that could be potential in vivo targets of androgenic action during puberty.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Genes/genética , Próstata/química , Próstata/metabolismo , Pubertad/genética , Adolescente , Adulto , Andrógenos/fisiología , Cadáver , Niño , ADN Complementario/genética , Genes/fisiología , Humanos , Masculino , Próstata/anatomía & histología , Próstata/patología , Hiperplasia Prostática/genética , Donantes de Tejidos , Vejiga Urinaria/química , Vejiga Urinaria/metabolismo
2.
J Cancer Biol Res ; 1(3)2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25285314

RESUMEN

The unlimited growth potential of tumors depends on telomere maintenance and typically depends on telomerase, an RNA-dependent DNA polymerase, which reverse transcribes the telomerase RNA template, synthesizing telomere repeats at the ends of chromosomes. Studies in various model organisms genetically deleted for telomerase indicate that several recombination-based mechanisms also contribute to telomere maintenance. Understanding the molecular basis of these mechanisms is critical since some human tumors form without telomerase, yet the sequence is maintained at the telomeres. Recombination-based mechanisms also likely contribute at some frequency to telomere maintenance in tumors expressing telomerase. Preventing telomere maintenance is predicted to impact tumor growth, yet inhibiting telomerase may select for the recombination-based mechanisms. Telomere recombination mechanisms likely involve altered or unregulated pathways of DNA repair. The use of some DNA damaging agents may encourage the use of these unregulated pathways of DNA repair to be utilized and may allow some tumors to generate resistance to these agents depending on which repair pathways are altered in the tumors. This review will discuss the various telomere recombination mechanisms and will provide rationale regarding the possibility that L1 retrotransposition may contribute to telomere maintenance in tumors lacking telomerase.

3.
Am J Pathol ; 161(5): 1743-8, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12414521

RESUMEN

The expression of thousands of genes can be monitored simultaneously using cDNA microarray technology. This technology is being used to understand the complexity of human disease. One significant technical concern regards potential alterations in gene expression because of the effect of tissue ischemia. This study evaluates the increase in the differential gene expression because of tissue processing time. To evaluate differential gene expression because of ischemia time, prostate samples were divided into five time points (0, 0.5, 1, 3, and 5 hours). Each time point consisted of a homogeneous mixture of 12 to 15 prostate tissue cubes (5 mm(3)). These tissues were maintained at room temperature until at the assigned time point the tissue was placed in OCT, flash frozen in liquid nitrogen, and stored at -80 degrees C until RNA extraction. RNA from each time point was hybridized against an aliquot of 0 time point RNA from the same prostate. Four prostate glands were used in parallel studies. M-A plots were graphed to compare variability between time point sample hybridizations. Statistical Analysis of Microarray software was used to identify genes overexpressed at the 1-hour time point versus the 0-hour time with statistically significance. Microarray analysis revealed only a small percentage of genes (<0.6%) from more than 9000 to demonstrate overexpression at the 1-hour time point. Among the 41 statistically significant named overexpressed genes at the 1-hour time point were early growth response 1 (EGR1), jun B proto-oncogene (jun B), jun D proto-oncogene (jun D), and activating transcription factor 3 (ATF3). Genes previously associated with prostate cancer did not have significantly altered expression with ischemia time. Increased EGR1 protein expression was confirmed by Western blot analysis. Microarray technology has opened the possibility of evaluating the expression of a multitude of genes simultaneously, however, the interpretation of this complex data needs to be assessed circumspectly using refined statistical methods. Because RNA expression represents the tissue response to insults such as ischemia, and is also sensitive to degradation, investigators need be mindful of confounding artifacts secondary to tissue processing. All attempts should be made to process tissue rapidly to ensure that the microarray gene profile accurately represents the state of the cells and confirmatory studies should be performed using alternative methods (eg, Northern blot analysis, Western blot, immunohistochemistry).


Asunto(s)
Artefactos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Prostatectomía , Neoplasias de la Próstata/genética , Regulación Neoplásica de la Expresión Génica , Calor , Humanos , Isquemia/metabolismo , Cinética , Masculino , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/cirugía , Proto-Oncogenes Mas , ARN Neoplásico/análisis , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA