Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 186(4): 786-802.e28, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36754049

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results from many diverse genetic causes. Although therapeutics specifically targeting known causal mutations may rescue individual types of ALS, these approaches cannot treat most cases since they have unknown genetic etiology. Thus, there is a pressing need for therapeutic strategies that rescue multiple forms of ALS. Here, we show that pharmacological inhibition of PIKFYVE kinase activates an unconventional protein clearance mechanism involving exocytosis of aggregation-prone proteins. Reducing PIKFYVE activity ameliorates ALS pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of ALS including C9ORF72, TARDBP, FUS, and sporadic. These findings highlight a potential approach for mitigating ALS pathogenesis that does not require stimulating macroautophagy or the ubiquitin-proteosome system.


Asunto(s)
Esclerosis Amiotrófica Lateral , Fosfatidilinositol 3-Quinasas , Animales , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras , Mutación , Proteína FUS de Unión a ARN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Modelos Animales de Enfermedad
2.
Hum Mol Genet ; 31(19): 3313-3324, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35594544

RESUMEN

Axonal degeneration is observed in early stages of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). This degeneration generally precedes apoptosis and therefore may be a promising therapeutic target. An increasing number of genes have been identified to actively regulate axonal degeneration and regeneration; however, only a few potential therapeutic targets have been identified in the context of neurodegenerative diseases. Here we investigate DLK-1, a major axonal regeneration pathway and its contribution to axonal degeneration phenotypes in several Caenorhabditis elegans ALS models. From this pathway, we identified the poly (ADP-ribose) (PAR) polymerases (PARP) PARP-1 and PARP-2 as the most consistent modifiers of axonal degeneration in our models of ALS. Genetic and pharmacological inhibition of PARP-1 and PARP-2 reduces axonal degeneration and improves related motor phenotypes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Caenorhabditis elegans , Enfermedades Neurodegenerativas , Adenosina Difosfato , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Quinasas Quinasa Quinasa PAM , Enfermedades Neurodegenerativas/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Ribosa
3.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34140407

RESUMEN

In 2006, GRN mutations were first linked to frontotemporal dementia (FTD), the leading cause of non-Alzheimer dementias. While much research has been dedicated to understanding the genetic causes of the disease, our understanding of the mechanistic impacts of GRN deficiency has only recently begun to take shape. With no known cure or treatment available for GRN-related FTD, there is a growing need to rapidly advance genetic and/or small-molecule therapeutics for this disease. This issue is complicated by the fact that, while lysosomal dysfunction seems to be a key driver of pathology, the mechanisms linking a loss of GRN to a pathogenic state remain unclear. In our attempt to address these key issues, we have turned to the nematode, Caenorhabditis elegans, to model, study, and find potential therapies for GRN-deficient FTD. First, we show that the loss of the nematode GRN ortholog, pgrn-1, results in several behavioral and molecular defects, including lysosomal dysfunction and defects in autophagic flux. Our investigations implicate the sphingolipid metabolic pathway in the regulation of many of the in vivo defects associated with pgrn-1 loss. Finally, we utilized these nematodes as an in vivo tool for high-throughput drug screening and identified two small molecules with potential therapeutic applications against GRN/pgrn-1 deficiency. These compounds reverse the biochemical, cellular, and functional phenotypes of GRN deficiency. Together, our results open avenues for mechanistic and therapeutic research into the outcomes of GRN-related neurodegeneration, both genetic and molecular.


Asunto(s)
Autofagia/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Lisosomas/genética , Progranulinas/metabolismo , Acetofenonas/farmacología , Animales , Benzopiranos/farmacología , Vías Biosintéticas , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Evaluación Preclínica de Medicamentos , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Mutación/genética , Fenotipo , Progranulinas/genética , Rivastigmina/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Esfingolípidos/metabolismo
4.
Neurobiol Dis ; 55: 64-75, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23567652

RESUMEN

C. elegans and D. rerio expressing mutant TAR DNA Binding Protein 43 (TDP-43) are powerful in vivo animal models for the genetics and pharmacology of amyotrophic lateral sclerosis (ALS). Using these small-animal models of ALS, we previously identified methylene blue (MB) as a potent suppressor of TDP-43 toxicity. Consequently here we investigated how MB might exert its neuroprotective properties and found that it acts through reduction of the endoplasmic reticulum (ER) stress response. We tested other compounds known to be active in the ER unfolded protein response in worms and zebrafish expressing mutant human TDP-43 (mTDP-43). We identified three compounds: salubrinal, guanabenz and a new structurally related compound phenazine, which also reduced paralysis, neurodegeneration and oxidative stress in our mTDP-43 models. Using C. elegans genetics, we showed that all four compounds act as potent suppressors of mTDP-43 toxicity through reduction of the ER stress response. Interestingly, these compounds operate through different branches of the ER unfolded protein pathway to achieve a common neuroprotective action. Our results indicate that protein-folding homeostasis in the ER is an important target for therapeutic development in ALS and other TDP-43-related neurodegenerative diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico/genética , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/fisiopatología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Cinamatos/farmacología , Cinamatos/uso terapéutico , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Reacción de Fuga/efectos de los fármacos , Reacción de Fuga/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Guanabenzo/farmacología , Guanabenzo/uso terapéutico , Humanos , Microinyecciones , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/etiología , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/patología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/patología , Fenazinas , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiourea/análogos & derivados , Tiourea/farmacología , Tiourea/uso terapéutico , Factores de Tiempo , Tacto/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética
5.
Neurotherapeutics ; 18(2): 1151-1165, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33782863

RESUMEN

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a polyglutamine expansion disease arising from a trinucleotide CAG repeat expansion in exon 10 of the gene ATXN3. There are no effective pharmacological treatments for MJD, thus the identification of new pathogenic mechanisms, and the development of novel therapeutics is urgently needed. In this study, we performed a comprehensive, blind drug screen of 3942 compounds (many FDA approved) and identified small molecules that rescued the motor-deficient phenotype in transgenic ATXN3 Caenorhabditis elegans strain. Out of this screen, five lead compounds restoring motility, protecting against neurodegeneration, and increasing the lifespan in ATXN3-CAG89 mutant worms were identified. These compounds were alfacalcidol, chenodiol, cyclophosphamide, fenbufen, and sulfaphenazole. We then investigated how these molecules might exert their neuroprotective properties. We found that three of these compounds, chenodiol, fenbufen, and sulfaphenazole, act as modulators for TFEB/HLH-30, a key transcriptional regulator of the autophagy process, and require this gene for their neuroprotective activities. These genetic-chemical approaches, using genetic C. elegans models for MJD and the screening, are promising tools to understand the mechanisms and pathways causing neurodegeneration, leading to MJD. Positively acting compounds may be promising candidates for investigation in mammalian models of MJD and preclinical applications in the treatment of this disease.


Asunto(s)
Ataxina-3/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Caenorhabditis elegans/genética , Ácido Quenodesoxicólico/administración & dosificación , Fenilbutiratos/administración & dosificación , Sulfafenazol/administración & dosificación , Animales , Animales Modificados Genéticamente , Ataxina-3/toxicidad , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/toxicidad , Evaluación Preclínica de Medicamentos/métodos , Longevidad/efectos de los fármacos , Longevidad/fisiología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética
6.
MicroPubl Biol ; 20212021.
Artículo en Inglés | MEDLINE | ID: mdl-34568776

RESUMEN

Mutations in the human DNA/RNA binding protein FUS are associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration, including some aggressive and juvenile onset forms. Cytoplasmic inclusions of human FUS proteins are observed in various neurodegenerative disorders, such as Huntington's disease or spinocerebellar ataxia, suggesting that FUS proteinopathy may be a key player in neurodegeneration. To better understand the pathogenic mechanisms of FUS, we created single copy transgenic Caenorhabditis elegans strains expressing full-length, untagged human FUS in the worm's GABAergic neurons. These transgenic worms expressing human mutant FUS (mFUS) display the same ALS-associated phenotypes than our previous multiple copy transgenic model, including adult-onset age-dependent loss of motility, progressive paralysis and GABAergic neurodegeneration. These phenotypes are distinct from the transgenic worms expressing human wild-type FUS (wtFUS). We introduce here our C. elegans single copy transgenic for human mutant FUS motor neuron toxicity that may be used for rapid genetic and pharmacological suppressor screening.

7.
Dis Model Mech ; 13(12)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33106327

RESUMEN

Spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease resulting in muscle atrophy and neurodegeneration, and is the leading genetic cause of infant death. SMA arises when there are homozygous deletion mutations in the human SMN1 gene, leading to a decrease in corresponding SMN1 protein. Although SMN1 is expressed across multiple tissue types, much of the previous research into SMA focused on the neuronal aspect of the disease, overlooking many of the potential non-neuronal aspects of the disease. Therefore, we sought to address this gap in knowledge by modeling SMA in the nematode Caenorhabditis elegans We mutated a previously uncharacterized allele, which resulted in the onset of mild SMA-like phenotypes, allowing us to monitor the onset of phenotypes at different stages. We observed that these mutant animals recapitulated many key features of the human disease, and most importantly, we observed that muscle dysfunction preceded neurodegeneration. Furthermore, we tested the therapeutic efficacy of targeting endoplasmic reticulum (ER) stress in non-neuronal cells and found it to be more effective than targeting ER stress in neuronal cells. We also found that the most potent therapeutic potential came from a combination of ER- and neuromuscular junction-targeted drugs. Together, our results suggest an important non-neuronal component of SMA pathology and highlight new considerations for therapeutic intervention.


Asunto(s)
Caenorhabditis elegans/fisiología , Estrés del Retículo Endoplásmico , Atrofia Muscular Espinal/patología , Degeneración Nerviosa/patología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Células Musculares/metabolismo , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/patología , Fenotipo , Mutación Puntual/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 1 para la Supervivencia de la Neurona Motora/genética
8.
Mol Ther Nucleic Acids ; 15: 12-25, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30831428

RESUMEN

Oculopharyngeal muscular dystrophy (OPMD) is caused by a small expansion of a short polyalanine (polyAla) tract in the poly(A)-binding protein nuclear 1 protein (PABPN1). Despite the monogenic nature of OPMD, no treatment is currently available. Here we report an RNA replacement strategy that has therapeutic potential in cell and C. elegans OPMD models. We develop selective microRNAs (miRNAs) against PABPN1, and we report that miRNAs and our previously developed hammerhead ribozymes (hhRzs) are capable of reducing the expression of both the mRNA and protein levels of PABPN1 by as much as 90%. Since OPMD derives from a very small expansion of GCG within the polyAla tract, our hhRz and miRNA molecules cannot distinguish between the wild-type and mutant mRNAs of PABPN1. Therefore, we designed an optimized-codon wild-type PABPN1 (opt-PABPN1) that is resistant to cleavage by hhRzs and miRNAs. Co-expression of opt-PABPN1 with either our hhRzs or miRNAs restored the level of PABPN1, concomitantly with a reduction in expanded PABPN1-associated cell death in a stable C2C12 OPMD model. Interestingly, knockdown of the PABPN1 by selective hhRzs in the C. elegans OPMD model significantly improved the motility of the PABPN1-13Ala worms. Taken together, RNA replacement therapy represents an exciting approach for OPMD treatment.

9.
Neurotherapeutics ; 16(4): 1149-1166, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31342410

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disorder in which the neuromuscular junction progressively degenerates, leading to movement difficulties, paralysis, and eventually death. ALS is currently being treated by only two FDA-approved drugs with modest efficacy in slowing disease progression. Often, the translation of preclinical findings to bedside terminates prematurely as the evaluation of potential therapeutic compounds focuses on a single study or a single animal model. To circumscribe these issues, we screened 3,765 novel small molecule derivatives of pimozide, a recently identified repurposed neuroleptic for ALS, in Caenorhabditis elegans, confirmed the hits in zebrafish and validated the most active compounds in mouse genetic models. Out of the 27 small molecules identified from the high-throughput screen in worms, 4 were found to recover locomotor defects in C. elegans and genetic zebrafish models of ALS. TRVA242 was identified as the most potent compound as it significantly improved efficiency in rescuing locomotor, motorneuron, and neuromuscular junction synaptic deficits in a C. elegans TDP-43 model and in multiple zebrafish genetic (TDP-43, SOD1, and C9ORF72) models of ALS. The actions of TRVA242 were also conserved in a mammalian model as it also stabilized neuromuscular junction deficits in a mouse SOD1 model of ALS. Compounds such as TRVA242 therefore represent new potential therapeutics for the treatment of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Modelos Animales de Enfermedad , Unión Neuromuscular/genética , Superóxido Dismutasa-1/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Unión al ADN/administración & dosificación , Proteínas de Unión al ADN/metabolismo , Humanos , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Técnicas de Cultivo de Órganos , Pimozida/administración & dosificación , Pimozida/metabolismo , Pez Cebra
10.
JCI Insight ; 2(22)2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29202456

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, fatal disorder with no effective treatment. We used simple genetic models of ALS to screen phenotypically for potential therapeutic compounds. We screened libraries of compounds in C. elegans, validated hits in zebrafish, and tested the most potent molecule in mice and in a small clinical trial. We identified a class of neuroleptics that restored motility in C. elegans and in zebrafish, and the most potent was pimozide, which blocked T-type Ca2+ channels in these simple models and stabilized neuromuscular transmission in zebrafish and enhanced it in mice. Finally, a short randomized controlled trial of sporadic ALS subjects demonstrated stabilization of motility and evidence of target engagement at the neuromuscular junction. Simple genetic models are, thus, useful in identifying promising compounds for the treatment of ALS, such as neuroleptics, which may stabilize neuromuscular transmission and prolong survival in this disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Antipsicóticos/farmacocinética , Antipsicóticos/uso terapéutico , Enfermedades de la Unión Neuromuscular/tratamiento farmacológico , Animales , Caenorhabditis elegans , Canales de Calcio/efectos de los fármacos , Canales de Calcio Tipo T/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Tolerancia a Medicamentos , Femenino , Ratones , Unión Neuromuscular/efectos de los fármacos , Pimozida/farmacología , Pez Cebra , Proteínas de Pez Cebra/metabolismo
12.
PLoS One ; 7(7): e42117, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22848727

RESUMEN

The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress.


Asunto(s)
Caenorhabditis elegans/citología , Proteínas de Unión al ADN/metabolismo , Azul de Metileno/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Proteína FUS de Unión a ARN/metabolismo , Pez Cebra/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Azul de Metileno/administración & dosificación , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Mutación , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Proteína FUS de Unión a ARN/genética , Factores de Tiempo , Pez Cebra/genética
13.
Biol Psychiatry ; 68(7): 649-56, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20646681

RESUMEN

BACKGROUND: Schizophrenia (SCZ) is one of the most disabling psychiatric disorders. It is thought to be due to a complex interplay between polygenic and various environmental risk factors, although recent reports on genomic copy number variations suggest that a fraction of the cases could result from variably penetrant de novo variants. The gene encoding the synaptic motor protein kinesin 17 (KIF17) involved in glutamatergic synapse is a candidate gene for SCZ. METHODS: As part of our Synapse to Disease project, we resequenced KIF17 in a cohort of individuals with sporadic SCZ (188 subjects). Additional populations included autism spectrum disorder (142 subjects), nonsyndromic mental retardation (95 subjects), and control subjects (568 subjects). Functional validation of the human mutation was done in developing zebrafish. RESULTS: Here we report the identification of a de novo nonsense truncating mutation in one patient with SCZ, in kinesin 17, a synaptic motor protein. No de novo or truncating KIF17 mutations were found in the additional samples. We further validated the pathogenic nature of this mutation by knocking down its expression in zebrafish embryos, which resulted in a developmental defect. CONCLUSIONS: Together our findings suggest that disruption of KIF17, although rare, could result in a schizophrenia phenotype and emphasize the possible involvement of rare de novo mutations in this disorder.


Asunto(s)
Predisposición Genética a la Enfermedad , Cinesinas/genética , Mutación/genética , Esquizofrenia/genética , Adulto , Animales , Animales Modificados Genéticamente , Trastorno Autístico/genética , Línea Celular Transformada , Estudios de Cohortes , Análisis Mutacional de ADN/métodos , Femenino , Pruebas Genéticas/métodos , Humanos , Larva , Masculino , Oligodesoxirribonucleótidos Antisentido/farmacología , ARN Mensajero/metabolismo , Transfección/métodos , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA