Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 30(4): 1190-7, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24410195

RESUMEN

Fe3O4/γ-Fe2O3 nanoparticles (NPs) based thin films were used as active layers in solid state resistive chemical sensors. NPs were synthesized by high temperature solution phase reaction. Sensing NP monolayers (ML) were deposited by Langmuir-Blodgett (LB) techniques onto chemoresistive transduction platforms. The sensing ML were UV treated to remove NP insulating capping. Sensors surface was characterized by scanning electron microscopy (SEM). Systematic gas sensing tests in controlled atmosphere were carried out toward NO2, CO, and acetone at different concentrations and working temperatures of the sensing layers. The best sensing performance results were obtained for sensors with higher NPs coverage (10 ML), mainly for NO2 gas showing interesting selectivity toward nitrogen oxides. Electrical properties and conduction mechanisms are discussed.

2.
Langmuir ; 28(25): 9395-404, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22662960

RESUMEN

An original diffraction model for the analysis of grazing-incidence small-angle X-ray scattering (GISAXS) from the nanoparticle Langmuir films was developed. This model relies on the concept of the 2D hexagonal paracrystal and employs the distorted-wave Born approximation that is relevant for GISAXS measurements at the air/water interface when the angle of incidence is close to the critical value. The model comprises the cases of the close-packed nanoparticle monolayer and bilayer with the AB-type layer stacking. In this way, both the lateral (along the interface) and vertical (normal to the interface) correlations of the nanoparticle positions can be analyzed. The model was applied to an in situ GISAXS study of the formation of a silver nanoparticle Langmuir film during compression at the air/water interface in the Langmuir-Blodgett trough. Spherical nanoparticles of 5.8 ± 0.6 nm diameter were employed. Different compression stages starting from the submonolayer up to the monolayer collapse via bilayer formation were analyzed in terms of the mean lateral interparticle distance, degree of paracrystal disorder, interlayer distance, vertical disorder, and layer-stacking type in the bilayer as well as the ratio between the monolayer and bilayer coverage in the final film. The model developed is applicable to any nanoparticle Langmuir film formed at the air/liquid interface to extract structural parameters on the nanoscale. The particular results obtained have direct implications on the preparation of silver plasmonic templates with "hot spots" for surface-enhanced Raman scattering.

3.
Nanotechnology ; 23(4): 045704, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22222583

RESUMEN

We report on grazing-incidence small-angle x-ray scattering (GISAXS) study of 3D nanoparticle arrays prepared by two different methods from colloidal solutions-layer-by-layer Langmuir-Schaefer deposition and spontaneous self-assembling during the solvent evaporation. GISAXS results are evaluated within the distorted wave Born approximation (DWBA) considering the multiple scattering effects and employing a simplified multilayer model to reduce the computing time. In the model, particular layers are represented by nanoparticle chains where the positions of individual nanoparticles are generated following a model of cumulative disorder. The nanoparticle size dispersion is considered as well. Three model cases are distinguished-no shift between the neighboring chains (AA stacking), a shift equal to half of the mean interparticle distance (AB stacking) and random shift between the chains. The first two cases correspond to vertically correlated nanoparticle positions across different chains. A comparison of the experimental GISAXS patterns with the model cases enabled us to distinguish important differences between the 3D arrays prepared by the two methods. In particular, laterally ordered layers without vertical correlation of the nanoparticle positions were found in the nanoparticle multilayers prepared by the Langmuir-Schaefer method. On the other hand, the solvent evaporation under particular conditions produced highly ordered 3D nanoparticle assemblies where both laterally and vertically correlated nanoparticle positions were found.

4.
Nanotechnology ; 21(38): 385702, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20739738

RESUMEN

An in situ small-angle x-ray scattering study of the nanoparticle displacement in a self-assembled monolayer as a function of a supporting membrane strain is presented. The average nanoparticle spacing is 6.7 nm in the unstrained state and increases in the applied force direction, following linearly the membrane strain which reaches the maximum value of 11%. The experimental results suggest a continuous mutual shift of the nanoparticles and their gradual separation with the growing stress rather than nanoparticle islands formation. No measurable shift of the nanoparticles was observed in the direction perpendicular to the applied stress.

5.
Small ; 4(12): 2222-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19003821

RESUMEN

The spontaneous self-assembly process of superparamagnetic nanoparticles in a fast-drying colloidal drop is observed in real time. The grazing-incidence small-angle X-ray scattering (GISAXS) technique is employed for an in situ tracking of the reciprocal space, with a 3 ms delay time between subsequent frames delivered by a new generation of X-ray cameras. A focused synchrotron beam and sophisticated sample oscillations make it possible to relate the dynamic reciprocal to direct space features and to localize the self-assembly. In particular, no nanoparticle ordering is found inside the evaporating drop and near-surface region down to a drop thickness of 90 microm. Scanning through the shrinking drop-contact line indicates the start of self-assembly near the drop three-phase interface, in accord with theoretical predictions. The results obtained have direct implications for establishing the self-assembly process as a routine technological step in the preparation of new nanostructures.


Asunto(s)
Nanopartículas/química , Microscopía Electrónica de Rastreo , Nanopartículas/ultraestructura , Difracción de Rayos X
6.
Rev Sci Instrum ; 82(8): 083706, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21895250

RESUMEN

We have developed a scanning magneto-optical Kerr microscope dedicated to localization and measurement of the in-plane magnetization of ultra-thin layered magnetic nanostructures with high sensitivity and signal-to-noise ratio. The novel light detection scheme is based on a differential photodetector with automatic common mode noise rejection system with a high noise suppression up to 50 dB. The sensitivity of the developed detection scheme was tested by measurement of a single Co layer and a giant magnetoresistance (GMR) multilayer stack. The spatial resolution of the Kerr microscope was demonstrated by mapping an isolated 5×5 µm spin-valve pillar.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA