Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 631(8022): 796-800, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39048683

RESUMEN

Methane is an important greenhouse gas1, but the role of trees in the methane budget remains uncertain2. Although it has been shown that wetland and some upland trees can emit soil-derived methane at the stem base3,4, it has also been suggested that upland trees can serve as a net sink for atmospheric methane5,6. Here we examine in situ woody surface methane exchange of upland tropical, temperate and boreal forest trees. We find that methane uptake on woody surfaces, in particular at and above about 2 m above the forest floor, can dominate the net ecosystem contribution of trees, resulting in a net tree methane sink. Stable carbon isotope measurement of methane in woody surface chamber air and process-level investigations on extracted wood cores are consistent with methanotrophy, suggesting a microbially mediated drawdown of methane on and in tree woody surfaces and tissues. By applying terrestrial laser scanning-derived allometry to quantify global forest tree woody surface area, a preliminary first estimate suggests that trees may contribute 24.6-49.9 Tg of atmospheric methane uptake globally. Our findings indicate that the climate benefits of tropical and temperate forest protection and reforestation may be greater than previously assumed.


Asunto(s)
Atmósfera , Bosques , Metano , Árboles , Madera , Atmósfera/química , Metano/metabolismo , Metano/análisis , Taiga , Árboles/química , Árboles/metabolismo , Árboles/microbiología , Clima Tropical , Madera/química , Madera/metabolismo , Madera/microbiología , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/metabolismo , Isótopos de Carbono , Agricultura Forestal , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Efecto Invernadero/prevención & control , Efecto Invernadero/estadística & datos numéricos
2.
Nature ; 627(8004): 564-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418889

RESUMEN

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Asunto(s)
Biodiversidad , Bosques , Mapeo Geográfico , Árboles , Modelos Biológicos , Especificidad de la Especie , Árboles/clasificación , Árboles/fisiología , Clima Tropical
3.
Nature ; 621(7977): 105-111, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612501

RESUMEN

The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages approximately 46.7 °C (Tcrit)1. However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change. Here we found that pantropical canopy temperatures independently triangulated from individual leaf thermocouples, pyrgeometers and remote sensing (ECOSTRESS) have midday peak temperatures of approximately 34 °C during dry periods, with a long high-temperature tail that can exceed 40 °C. Leaf thermocouple data from multiple sites across the tropics suggest that even within pixels of moderate temperatures, upper canopy leaves exceed Tcrit 0.01% of the time. Furthermore, upper canopy leaf warming experiments (+2, 3 and 4 °C in Brazil, Puerto Rico and Australia, respectively) increased leaf temperatures non-linearly, with peak leaf temperatures exceeding Tcrit 1.3% of the time (11% for more than 43.5 °C, and 0.3% for more than 49.9 °C). Using an empirical model incorporating these dynamics (validated with warming experiment data), we found that tropical forests can withstand up to a 3.9 ± 0.5 °C increase in air temperatures before a potential tipping point in metabolic function, but remaining uncertainty in the plasticity and range of Tcrit in tropical trees and the effect of leaf death on tree death could drastically change this prediction. The 4.0 °C estimate is within the 'worst-case scenario' (representative concentration pathway (RCP) 8.5) of climate change predictions2 for tropical forests and therefore it is still within our power to decide (for example, by not taking the RCP 6.0 or 8.5 route) the fate of these critical realms of carbon, water and biodiversity3,4.


Asunto(s)
Aclimatación , Calor Extremo , Bosques , Fotosíntesis , Árboles , Clima Tropical , Aclimatación/fisiología , Australia , Brasil , Calor Extremo/efectos adversos , Calentamiento Global , Fotosíntesis/fisiología , Puerto Rico , Desarrollo Sostenible/legislación & jurisprudencia , Desarrollo Sostenible/tendencias , Árboles/fisiología , Hojas de la Planta/fisiología , Incertidumbre
4.
Nature ; 612(7941): 707-713, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517596

RESUMEN

Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem processes in large suites of species have rarely been assessed in an ecologically integrated and quantitative framework. Here we adopt an ecosystem energetics lens to gain new insight into the impacts of tropical forest disturbance on a key integrative aspect of ecological function: food pathways and community structure of birds and mammals. We focus on a gradient spanning old-growth and logged forests and oil palm plantations in Borneo. In logged forest there is a 2.5-fold increase in total resource consumption by both birds and mammals compared to that in old-growth forests, probably driven by greater resource accessibility and vegetation palatability. Most principal energetic pathways maintain high species diversity and redundancy, implying maintained resilience. Conversion of logged forest into oil palm plantation results in the collapse of most energetic pathways. Far from being degraded ecosystems, even heavily logged forests can be vibrant and diverse ecosystems with enhanced levels of ecological function.


Asunto(s)
Aves , Metabolismo Energético , Cadena Alimentaria , Agricultura Forestal , Bosques , Mamíferos , Clima Tropical , Animales , Biodiversidad , Biomasa , Aves/fisiología , Borneo , Mamíferos/fisiología , Aceite de Palma , Árboles/crecimiento & desarrollo , Ecología
5.
Nature ; 608(7923): 528-533, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35585230

RESUMEN

Evidence exists that tree mortality is accelerating in some regions of the tropics1,2, with profound consequences for the future of the tropical carbon sink and the global anthropogenic carbon budget left to limit peak global warming below 2 °C. However, the mechanisms that may be driving such mortality changes and whether particular species are especially vulnerable remain unclear3-8. Here we analyse a 49-year record of tree dynamics from 24 old-growth forest plots encompassing a broad climatic gradient across the Australian moist tropics and find that annual tree mortality risk has, on average, doubled across all plots and species over the last 35 years, indicating a potential halving in life expectancy and carbon residence time. Associated losses in biomass were not offset by gains from growth and recruitment. Plots in less moist local climates presented higher average mortality risk, but local mean climate did not predict the pace of temporal increase in mortality risk. Species varied in the trajectories of their mortality risk, with the highest average risk found nearer to the upper end of the atmospheric vapour pressure deficit niches of species. A long-term increase in vapour pressure deficit was evident across the region, suggesting that thresholds involving atmospheric water stress, driven by global warming, may be a primary cause of increasing tree mortality in moist tropical forests.


Asunto(s)
Atmósfera , Estrés Fisiológico , Árboles , Clima Tropical , Agua , Aclimatación , Atmósfera/química , Australia , Biomasa , Carbono/metabolismo , Secuestro de Carbono , Deshidratación , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XX , Historia del Siglo XXI , Humedad , Densidad de Población , Riesgo , Factores de Tiempo , Árboles/clasificación , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Agua/análisis , Agua/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(34): e2402970121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133856

RESUMEN

Ecosystem restoration is inherently a complex activity with inevitable tradeoffs in environmental and societal outcomes. These tradeoffs can potentially be large when policies and practices are focused on single outcomes versus joint achievement of multiple outcomes. Few studies have assessed the tradeoffs in Nature's Contributions to People (NCP) and the distributional equity of NCP from forest restoration strategies. Here, we optimized a defined forest restoration area across India with systematic conservation planning to assess the tradeoffs between three NCP: i) climate change mitigation NCP, ii) biodiversity value NCP (habitat created for forest-dependent mammals), and iii) societal NCP (human direct use of restored forests for livelihoods, housing construction material, and energy). We show that restoration plans aimed at a single-NCP tend not to deliver other NCP outcomes efficiently. In contrast, integrated spatial forest restoration plans aimed at achievement of multiple outcomes deliver on average 83.3% (43.2 to 100%) of climate change mitigation NCP, 89.9% (63.8 to 100%) of biodiversity value NCP, and 93.9% (64.5 to 100%) of societal NCP delivered by single-objective plans. Integrated plans deliver NCP more evenly across the restoration area when compared to other plans that identify certain regions such as the Western Ghats and north-eastern India. Last, 38 to 41% of the people impacted by integrated spatial plans belong to socioeconomically disadvantaged groups, greater than their overall representation in India's population. Moving ahead, effective policy design and evaluation integrating ecosystem protection and restoration strategies can benefit from the blueprint we provide in this study for India.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Bosques , Conservación de los Recursos Naturales/métodos , Humanos , India , Ecosistema , Restauración y Remediación Ambiental/métodos
7.
Nature ; 585(7826): 545-550, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32968258

RESUMEN

To constrain global warming, we must strongly curtail greenhouse gas emissions and capture excess atmospheric carbon dioxide1,2. Regrowing natural forests is a prominent strategy for capturing additional carbon3, but accurate assessments of its potential are limited by uncertainty and variability in carbon accumulation rates2,3. To assess why and where rates differ, here we compile 13,112 georeferenced measurements of carbon accumulation. Climatic factors explain variation in rates better than land-use history, so we combine the field measurements with 66 environmental covariate layers to create a global, one-kilometre-resolution map of potential aboveground carbon accumulation rates for the first 30 years of natural forest regrowth. This map shows over 100-fold variation in rates across the globe, and indicates that default rates from the Intergovernmental Panel on Climate Change (IPCC)4,5 may underestimate aboveground carbon accumulation rates by 32 per cent on average and do not capture eight-fold variation within ecozones. Conversely, we conclude that maximum climate mitigation potential from natural forest regrowth is 11 per cent lower than previously reported3 owing to the use of overly high rates for the location of potential new forest. Although our data compilation includes more studies and sites than previous efforts, our results depend on data availability, which is concentrated in ten countries, and data quality, which varies across studies. However, the plots cover most of the environmental conditions across the areas for which we predicted carbon accumulation rates (except for northern Africa and northeast Asia). We therefore provide a robust and globally consistent tool for assessing natural forest regrowth as a climate mitigation strategy.


Asunto(s)
Secuestro de Carbono , Carbono/metabolismo , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias , Bosques , Mapeo Geográfico , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Conservación de los Recursos Naturales , Recolección de Datos , Restauración y Remediación Ambiental , Calentamiento Global/prevención & control , Internacionalidad , Cinética
8.
Proc Natl Acad Sci U S A ; 120(3): e2214462120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623189

RESUMEN

Logged and structurally degraded tropical forests are fast becoming one of the most prevalent land-use types throughout the tropics and are routinely assumed to be a net carbon sink because they experience rapid rates of tree regrowth. Yet this assumption is based on forest biomass inventories that record carbon stock recovery but fail to account for the simultaneous losses of carbon from soil and necromass. Here, we used forest plots and an eddy covariance tower to quantify and partition net ecosystem CO2 exchange in Malaysian Borneo, a region that is a hot spot for deforestation and forest degradation. Our data represent the complete carbon budget for tropical forests measured throughout a logging event and subsequent recovery and found that they constitute a substantial and persistent net carbon source. Consistent with existing literature, our study showed a significantly greater woody biomass gain across moderately and heavily logged forests compared with unlogged forests, but this was counteracted by much larger carbon losses from soil organic matter and deadwood in logged forests. We estimate an average carbon source of 1.75 ± 0.94 Mg C ha-1 yr-1 within moderately logged plots and 5.23 ± 1.23 Mg C ha-1 yr-1 in unsustainably logged and severely degraded plots, with emissions continuing at these rates for at least one-decade post-logging. Our data directly contradict the default assumption that recovering logged and degraded tropical forests are net carbon sinks, implying the amount of carbon being sequestered across the world's tropical forests may be considerably lower than currently estimated.


Asunto(s)
Carbono , Ecosistema , Clima Tropical , Biomasa , Atmósfera , Suelo
10.
New Phytol ; 244(1): 91-103, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39148398

RESUMEN

Stem respiration constitutes a substantial proportion of autotrophic respiration in forested ecosystems, but its drivers across different spatial scales and land-use gradients remain poorly understood. This study quantifies and examines the impact of logging disturbance on stem CO2 efflux (EA) in Malaysian Borneo. EA was quantified at tree- and stand-level in nine 1-ha plots over a logging gradient from heavily logged to old-growth using the static chamber method. Tree-level results showed higher EA per unit stem area in logged vs old-growth plots (37.0 ± 1.1 vs 26.92 ± 1.14 g C m-2 month-1). However, at stand-level, there was no difference in EA between logged and old-growth plots (6.7 ± 1.1 vs 6.0 ± 0.7 Mg C ha-1 yr-1) due to greater stem surface area in old-growth plots. Allocation to growth respiration and carbon use efficiency was significantly higher in logged plots. Variation in EA at both tree- and stand-level was driven by tree size, growth and differences in investment strategies between the forest types. These results reflect different resource allocation strategies and priorities, with a priority for growth in response to increased light availability in logged plots, while old-growth plots prioritise maintenance and cell structure.


Asunto(s)
Dióxido de Carbono , Tallos de la Planta , Árboles , Dióxido de Carbono/metabolismo , Borneo , Tallos de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Agricultura Forestal/métodos , Malasia , Bosques , Respiración de la Célula
11.
Nature ; 564(7735): 207-212, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30429613

RESUMEN

Global warming is forcing many species to shift their distributions upward, causing consequent changes in the compositions of species that occur at specific locations. This prediction remains largely untested for tropical trees. Here we show, using a database of nearly 200 Andean forest plot inventories spread across more than 33.5° latitude (from 26.8° S to 7.1° N) and 3,000-m elevation (from 360 to 3,360 m above sea level), that tropical and subtropical tree communities are experiencing directional shifts in composition towards having greater relative abundances of species from lower, warmer elevations. Although this phenomenon of 'thermophilization' is widespread throughout the Andes, the rates of compositional change are not uniform across elevations. The observed heterogeneity in thermophilization rates is probably because of different warming rates and/or the presence of specialized tree communities at ecotones (that is, at the transitions between distinct habitats, such as at the timberline or at the base of the cloud forest). Understanding the factors that determine the directions and rates of compositional changes will enable us to better predict, and potentially mitigate, the effects of climate change on tropical forests.


Asunto(s)
Aclimatación , Altitud , Biodiversidad , Bosques , Calentamiento Global , Temperatura , Árboles/clasificación , Árboles/fisiología , Bases de Datos Factuales , Planificación en Desastres/tendencias , Desastres/prevención & control , Predicción/métodos , Especificidad de la Especie , Clima Tropical
12.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34282005

RESUMEN

With humanity facing an unprecedented climate crisis, the conservation of tropical forests has never been so important - their vast terrestrial carbon stocks can be turned into emissions by climatic and human disturbances. However, the duration of these effects is poorly understood, and it is unclear whether impacts are amplified in forests with a history of previous human disturbance. Here, we focus on the Amazonian epicenter of the 2015-16 El Niño, a region that encompasses 1.2% of the Brazilian Amazon. We quantify, at high temporal resolution, the impacts of an extreme El Niño (EN) drought and extensive forest fires on plant mortality and carbon loss in undisturbed and human-modified forests. Mortality remained higher than pre-El Niño levels for 36 mo in EN-drought-affected forests and for 30 mo in EN-fire-affected forests. In EN-fire-affected forests, human disturbance significantly increased plant mortality. Our investigation of the ecological and physiological predictors of tree mortality showed that trees with lower wood density, bark thickness and leaf nitrogen content, as well as those that experienced greater fire intensity, were more vulnerable. Across the region, the 2015-16 El Niño led to the death of an estimated 2.5 ± 0.3 billion stems, resulting in emissions of 495 ± 94 Tg CO2 Three years after the El Niño, plant growth and recruitment had offset only 37% of emissions. Our results show that limiting forest disturbance will not only help maintain carbon stocks, but will also maximize the resistance of Amazonian forests if fires do occur.


Asunto(s)
Ciclo del Carbono , Sequías , El Niño Oscilación del Sur , Agricultura Forestal/estadística & datos numéricos , Fenómenos Fisiológicos de las Plantas , Árboles/crecimiento & desarrollo , Incendios Forestales , Brasil , Bosques , Humanos
13.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001597

RESUMEN

The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests.


Asunto(s)
Cambio Climático , Bosque Lluvioso , Árboles/crecimiento & desarrollo , Clima Tropical , Ciclo del Carbono , Sequías , El Niño Oscilación del Sur , Calor , Humanos , Estaciones del Año
14.
Glob Chang Biol ; 29(3): 856-873, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36278893

RESUMEN

"Least-cost theory" posits that C3 plants should balance rates of photosynthetic water loss and carboxylation in relation to the relative acquisition and maintenance costs of resources required for these activities. Here we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia-wide trait dataset spanning 528 species from 67 sites. We tested the hypotheses that plants on relatively cold or dry sites, or on relatively more fertile sites, would typically operate at greater CO2 drawdown (lower ratio of leaf internal to ambient CO2 , Ci :Ca ) during light-saturated photosynthesis, and at higher leaf N per area (Narea ) and higher carboxylation capacity (Vcmax 25 ) for a given rate of stomatal conductance to water vapour, gsw . These results would be indicative of plants having relatively higher water costs than nutrient costs. In general, our hypotheses were supported. Soil total phosphorus (P) concentration and (more weakly) soil pH exerted positive effects on the Narea -gsw and Vcmax 25 -gsw slopes, and negative effects on Ci :Ca . The P effect strengthened when the effect of climate was removed via partial regression. We observed similar trends with increasing soil cation exchange capacity and clay content, which affect soil nutrient availability, and found that soil properties explained similar amounts of variation in the focal traits as climate did. Although climate typically explained more trait variation than soil did, together they explained up to 52% of variation in the slope relationships and soil properties explained up to 30% of the variation in individual traits. Soils influenced photosynthetic traits as well as their coordination. In particular, the influence of soil P likely reflects the Australia's geologically ancient low-relief landscapes with highly leached soils. Least-cost theory provides a valuable framework for understanding trade-offs between resource costs and use in plants, including limiting soil nutrients.


Asunto(s)
Dióxido de Carbono , Suelo , Suelo/química , Clima , Fotosíntesis , Hojas de la Planta , Plantas
15.
Glob Chang Biol ; 28(4): 1414-1432, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34741793

RESUMEN

A better understanding of how climate affects growth in tree species is essential for improved predictions of forest dynamics under climate change. Long-term climate averages (mean climate) drive spatial variations in species' baseline growth rates, whereas deviations from these averages over time (anomalies) can create growth variation around the local baseline. However, the rarity of long-term tree census data spanning climatic gradients has so far limited our understanding of their respective role, especially in tropical systems. Furthermore, tree growth sensitivity to climate is likely to vary widely among species, and the ecological strategies underlying these differences remain poorly understood. Here, we utilize an exceptional dataset of 49 years of growth data for 509 tree species across 23 tropical rainforest plots along a climatic gradient to examine how multiannual tree growth responds to both climate means and anomalies, and how species' functional traits mediate these growth responses to climate. We show that anomalous increases in atmospheric evaporative demand and solar radiation consistently reduced tree growth. Drier forests and fast-growing species were more sensitive to water stress anomalies. In addition, species traits related to water use and photosynthesis partly explained differences in growth sensitivity to both climate means and anomalies. Our study demonstrates that both climate means and anomalies shape tree growth in tropical forests and that species traits can provide insights into understanding these demographic responses to climate change, offering a promising way forward to forecast tropical forest dynamics under different climate trajectories.


Asunto(s)
Árboles , Clima Tropical , Cambio Climático , Bosques , Hojas de la Planta
16.
Glob Chang Biol ; 28(9): 2895-2909, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35080088

RESUMEN

The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.


Asunto(s)
Cambio Climático , Clima Tropical , Biomasa , Demografía , Ecosistema
17.
PLoS Comput Biol ; 17(4): e1008853, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33914731

RESUMEN

When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands' physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the trees' distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions.


Asunto(s)
Evolución Biológica , Bosques , Árboles , Análisis por Conglomerados , Fenómenos Ecológicos y Ambientales , Modelos Biológicos , Filogenia
19.
New Phytol ; 229(1): 631-648, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32964424

RESUMEN

Leaf vein network geometry can predict levels of resource transport, defence and mechanical support that operate at different spatial scales. However, it is challenging to quantify network architecture across scales due to the difficulties both in segmenting networks from images and in extracting multiscale statistics from subsequent network graph representations. Here we developed deep learning algorithms using convolutional neural networks (CNNs) to automatically segment leaf vein networks. Thirty-eight CNNs were trained on subsets of manually defined ground-truth regions from >700 leaves representing 50 southeast Asian plant families. Ensembles of six independently trained CNNs were used to segment networks from larger leaf regions (c. 100 mm2 ). Segmented networks were analysed using hierarchical loop decomposition to extract a range of statistics describing scale transitions in vein and areole geometry. The CNN approach gave a precision-recall harmonic mean of 94.5% ± 6%, outperforming other current network extraction methods, and accurately described the widths, angles and connectivity of veins. Multiscale statistics then enabled the identification of previously undescribed variation in network architecture across species. We provide a LeafVeinCNN software package to enable multiscale quantification of leaf vein networks, facilitating the comparison across species and the exploration of the functional significance of different leaf vein architectures.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Hojas de la Planta , Programas Informáticos
20.
New Phytol ; 232(6): 2506-2519, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34379801

RESUMEN

Recent studies have demonstrated that ecological processes that shape community structure and dynamics change along environmental gradients. However, much less is known about how the emergence of the gradients themselves shape the evolution of species that underlie community assembly. In this study, we address how the creation of novel environments leads to community assembly via two nonmutually exclusive processes: immigration and ecological sorting of pre-adapted clades (ISPC), and recent adaptive diversification (RAD). We study these processes in the context of the elevational gradient created by the uplift of the Central Andes. We develop a novel approach and method based on the decomposition of species turnover into within- and among-clade components, where clades correspond to lineages that originated before mountain uplift. Effects of ISPC and RAD can be inferred from how components of turnover change with elevation. We test our approach using data from over 500 Andean forest plots. We found that species turnover between communities at different elevations is dominated by the replacement of clades that originated before the uplift of the Central Andes. Our results suggest that immigration and sorting of clades pre-adapted to montane habitats is the primary mechanism shaping tree communities across elevations.


Asunto(s)
Biodiversidad , Ecosistema , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA