Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Clin Genet ; 100(2): 187-200, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33955014

RESUMEN

Mutations affecting the transcriptional regulator Ankyrin Repeat Domain 11 (ANKRD11) are mainly associated with the multisystem developmental disorder known as KBG syndrome, but have also been identified in individuals with Cornelia de Lange syndrome (CdLS) and other developmental disorders caused by variants affecting different chromatin regulators. The extensive functional overlap of these proteins results in shared phenotypical features, which complicate the assessment of the clinical diagnosis. Additionally, re-evaluation of individuals at a later age occasionally reveals that the initial phenotype has evolved toward clinical features more reminiscent of a developmental disorder different from the one that was initially diagnosed. For this reason, variants in ANKRD11 can be ascribed to a broader class of disorders that fall within the category of the so-called chromatinopathies. In this work, we report on the clinical characterization of 23 individuals with variants in ANKRD11. The subjects present primarily with developmental delay, intellectual disability and dysmorphic features, and all but two received an initial clinical diagnosis of either KBG syndrome or CdLS. The number and the severity of the clinical signs are overlapping but variable and result in a broad spectrum of phenotypes, which could be partially accounted for by the presence of additional molecular diagnoses and distinct pathogenic mechanisms.


Asunto(s)
Anomalías Múltiples/etiología , Enfermedades del Desarrollo Óseo/etiología , Discapacidad Intelectual/etiología , Proteínas Represoras/genética , Anomalías Dentarias/etiología , Anomalías Múltiples/genética , Adolescente , Enfermedades del Desarrollo Óseo/genética , Niño , Preescolar , Cara/anomalías , Facies , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Mutación , Linaje , Anomalías Dentarias/genética , Adulto Joven
2.
Hum Mol Genet ; 23(11): 2888-900, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24403048

RESUMEN

Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder with distinct facies, growth failure, intellectual disability, distal limb anomalies, gastrointestinal and neurological disease. Mutations in NIPBL, encoding a cohesin regulatory protein, account for >80% of cases with typical facies. Mutations in the core cohesin complex proteins, encoded by the SMC1A, SMC3 and RAD21 genes, together account for ∼5% of subjects, often with atypical CdLS features. Recently, we identified mutations in the X-linked gene HDAC8 as the cause of a small number of CdLS cases. Here, we report a cohort of 38 individuals with an emerging spectrum of features caused by HDAC8 mutations. For several individuals, the diagnosis of CdLS was not considered prior to genomic testing. Most mutations identified are missense and de novo. Many cases are heterozygous females, each with marked skewing of X-inactivation in peripheral blood DNA. We also identified eight hemizygous males who are more severely affected. The craniofacial appearance caused by HDAC8 mutations overlaps that of typical CdLS but often displays delayed anterior fontanelle closure, ocular hypertelorism, hooding of the eyelids, a broader nose and dental anomalies, which may be useful discriminating features. HDAC8 encodes the lysine deacetylase for the cohesin subunit SMC3 and analysis of the functional consequences of the missense mutations indicates that all cause a loss of enzymatic function. These data demonstrate that loss-of-function mutations in HDAC8 cause a range of overlapping human developmental phenotypes, including a phenotypically distinct subgroup of CdLS.


Asunto(s)
Fontanelas Craneales/anomalías , Síndrome de Cornelia de Lange/enzimología , Anomalías del Ojo/enzimología , Genes Ligados a X , Histona Desacetilasas/genética , Hipertelorismo/enzimología , Proteínas Represoras/genética , Secuencia de Aminoácidos , Niño , Preescolar , Estudios de Cohortes , Fontanelas Craneales/enzimología , Síndrome de Cornelia de Lange/genética , Anomalías del Ojo/genética , Femenino , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Hipertelorismo/genética , Lactante , Masculino , Datos de Secuencia Molecular , Mutación Missense , Fenotipo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Alineación de Secuencia
3.
Eur J Hum Genet ; 20(3): 271-6, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21934712

RESUMEN

Cornelia de Lange syndrome (CdLS; or Brachmann-de Lange syndrome) is a dominantly inherited congenital malformation disorder with features that include characteristic facies, cognitive delays, growth retardation and limb anomalies. Mutations in nearly 60% of CdLS patients have been identified in NIPBL, which encodes a regulator of the sister chromatid cohesion complex. NIPBL, also known as delangin, is a homolog of yeast and amphibian Scc2 and C. elegans PQN-85. Although the exact mechanism of NIPBL function in sister chromatid cohesion is unclear, in vivo yeast and C. elegans experiments and in vitro vertebrate cell experiments have demonstrated that NIPBL/Scc2 functionally interacts with the MAU2/Scc4 protein to initiate loading of cohesin onto chromatin. To test the significance of this model in the clinical setting of CdLS, we fine-mapped the NIBPL-MAU2 interaction domain and tested the functional significance of missense mutations and variants in NIPBL and MAU2 identified in these minimal domains in a cohort of patients with CdLS. We demonstrate that specific novel mutations at the N-terminus of the MAU2-interacting domain of NIBPL result in markedly reduced MAU2 binding, although we appreciate no consistent clinical difference in the small group of patients with these mutations. These data suggest that factors in addition to MAU2 are essential in determining the clinical features and severity of CdLS.


Asunto(s)
Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Mutación Missense , Proteínas/genética , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Facies , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Fenotipo , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA