Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Bioorg Chem ; 148: 107495, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38805850

RESUMEN

Targeting Ribonuclease H (RNase H) has been considered a viable strategy for HIV therapy. In this study, a series of novel thiazolo[3, 2-a]pyrimidine derivatives were firstly designed and synthesized as potential inhibitors of HIV-1 RNase H. Among these compounds, A28 exhibited the most potent inhibition against HIV-1 RNase H with an IC50 value of 4.14 µM, which was about 5-fold increase in potency than the hit compound A1 (IC50 = 21.49 µM). To gain deeper insights into the structure-activity relationship (SAR), a CoMFA model was constructed to yield reasonable statistical results (q2 = 0.658 and R2 = 0.969). Results from magnesium ion chelation experiments and molecular docking studies revealed that these thiazolopyrimidine inhibitors may exert their inhibitory activity by binding to an allosteric site on RNase H at the interface between subunits p51 and p66. Furthermore, this analog demonstrated favorable physicochemical properties. Our findings provide valuable groundwork for further development of allosteric inhibitors targeting HIV-1 RNase H.


Asunto(s)
Diseño de Fármacos , VIH-1 , Simulación del Acoplamiento Molecular , Pirimidinas , Relación Estructura-Actividad , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/síntesis química , VIH-1/efectos de los fármacos , VIH-1/enzimología , Humanos , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , Estructura Molecular , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Ribonucleasa H/antagonistas & inhibidores , Ribonucleasa H/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/metabolismo
2.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731613

RESUMEN

Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 µM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors.


Asunto(s)
Fármacos Anti-VIH , Simulación del Acoplamiento Molecular , Pirimidinas , Relación Estructura-Actividad Cuantitativa , Pirimidinas/química , Pirimidinas/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/síntesis química , Humanos , Simulación de Dinámica Molecular , Ribonucleasa H/antagonistas & inhibidores , Ribonucleasa H/metabolismo , Diseño de Fármacos , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , VIH-1/enzimología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Tiazoles/química , Tiazoles/farmacología , Estructura Molecular
3.
Polymers (Basel) ; 15(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299335

RESUMEN

It is well known that viruses cannot replicate on their own but only inside the cells of target tissues in the organism, resulting in the destruction of the cells or, in some cases, their transformation into cancer cells. While viruses have relatively low resistance in the environment, their ability to survive longer is based on environmental conditions and the type of substrate on which they are deposited. Recently, the potential for safe and efficient viral inactivation by photocatalysis has garnered increasing attention. In this study, the Phenyl carbon nitride/TiO2 heterojunction system, a hybrid organic-inorganic photocatalyst, was utilized to investigate its effectiveness in degrading the flu virus (H1N1). The system was activated by a white-LED lamp, and the process was tested on MDCK cells infected with the flu virus. The results of the study demonstrate the hybrid photocatalyst's ability to cause the virus to degrade, highlighting its effectiveness for safe and efficient viral inactivation in the visible light range. Additionally, the study underscores the advantages of using this hybrid photocatalyst over traditional inorganic photocatalysts, which typically only work in the ultraviolet range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA