Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Viruses ; 15(7)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37515236

RESUMEN

Most vector control activities in urban areas are focused on household environments; however, information relating to infection risks in spaces other than households is poor, and the relative risk that these spaces represent has not yet been fully understood. We used data-driven simulations to investigate the importance of household and non-household environments for dengue entomological risk in two Kenyan cities where dengue circulation has been reported. Fieldwork was performed using four strategies that targeted different stages of mosquitoes: ovitraps, larval collections, Prokopack aspiration, and BG-sentinel traps. Data were analyzed separately between household and non-household environments to assess mosquito presence, the number of vectors collected, and the risk factors for vector presence. With these data, we simulated vector and human populations to estimate the parameter m and mosquito-to-human density in both household and non-household environments. Among the analyzed variables, the main difference was found in mosquito abundance, which was consistently higher in non-household environments in Kisumu but was similar in Ukunda. Risk factor analysis suggests that small, clean water-related containers serve as mosquito breeding places in households as opposed to the trash- and rainfall-related containers found in non-household structures. We found that the density of vectors (m) was higher in non-household than household environments in Kisumu and was also similar or slightly lower between both environments in Ukunda. These results suggest that because vectors are abundant, there is a potential risk of transmission in non-household environments; hence, vector control activities should take these spaces into account.


Asunto(s)
Aedes , Dengue , Animales , Humanos , Dengue/prevención & control , Mosquitos Vectores , Kenia , Composición Familiar , Control de Mosquitos/métodos
2.
PLOS Glob Public Health ; 3(7): e0001950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37494331

RESUMEN

Poor access to diagnostic testing in resource limited settings restricts surveillance for emerging infections, such as dengue virus (DENV), to clinician suspicion, based on history and exam observations alone. We investigated the ability of machine learning to detect DENV based solely on data available at the clinic visit. We extracted symptom and physical exam data from 6,208 pediatric febrile illness visits to Kenyan public health clinics from 2014-2019 and created a dataset with 113 clinical features. Malaria testing was available at the clinic site. DENV testing was performed afterwards. We randomly sampled 70% of the dataset to develop DENV and malaria prediction models using boosted logistic regression, decision trees and random forests, support vector machines, naïve Bayes, and neural networks with 10-fold cross validation, tuned to maximize accuracy. 30% of the dataset was reserved to validate the models. 485 subjects (7.8%) had DENV, and 3,145 subjects (50.7%) had malaria. 220 (3.5%) subjects had co-infection with both DENV and malaria. In the validation dataset, clinician accuracy for diagnosis of malaria was high (82% accuracy, 85% sensitivity, 80% specificity). Accuracy of the models for predicting malaria diagnosis ranged from 53-69% (35-94% sensitivity, 11-80% specificity). In contrast, clinicians detected only 21 of 145 cases of DENV (80% accuracy, 14% sensitivity, 85% specificity). Of the six models, only logistic regression identified any DENV case (8 cases, 91% accuracy, 5.5% sensitivity, 98% specificity). Without diagnostic testing, interpretation of clinical findings by humans or machines cannot detect DENV at 8% prevalence. Access to point-of-care diagnostic tests must be prioritized to address global inequities in emerging infections surveillance.

3.
PLOS Glob Public Health ; 2(7): e0000505, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962424

RESUMEN

The Rift Valley fever virus (RVFV) is a zoonotic arbovirus that can also transmit directly to humans from livestock. Previous studies have shown consumption of sick animal products are risk factors for RVFV infection, but it is difficult to disentangle those risk factors from other livestock rearing activities. Urban areas have an increased demand for animal source foods, different vector distributions, and various arboviruses are understood to establish localized urban transmission cycles. Thus far, RVFV is an unevaluated public health risk in urban areas within endemic regions. We tested participants in our ongoing urban cohort study on dengue (DENV) and chikungunya (CHIKV) virus for RVFV exposure and found 1.6% (57/3,560) of individuals in two urban areas of Kenya had anti-RVFV IgG antibodies. 88% (50/57) of RVFV exposed participants also had antibodies to DENV, CHIKV, or both. Although livestock ownership was very low in urban study sites, RVFV exposure was overall significantly associated with seeing goats around the homestead (OR = 2.34 (CI 95%: 1.18-4.69, p = 0.02) and in Kisumu, RVFV exposure was associated with consumption of raw milk (OR = 6.28 (CI 95%: 0.94-25.21, p = 0.02). In addition, lack of piped water and use of small jugs (15-20 liters) for water was associated with a higher risk of RVFV exposure (OR = 5.36 (CI 95%: 1.23-16.44, p = 0.01) and this may contribute to interepidemic vector-borne maintenance of RVFV. We also investigated perception towards human vaccination for RVFV and identified high acceptance (91% (97/105) at our study sites. This study provides baseline evidence to guide future studies investigating the urban potential of RVFV and highlights the unexplored role of animal products in continued spread of RVFV.

4.
PLOS Glob Public Health ; 2(4): e0000175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962138

RESUMEN

From 1975-2009, the WHO guidelines classified symptomatic dengue virus infections as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. In 2009 the case definition was changed to a clinical classification after concern the original criteria was challenging to apply in resource-limited settings and not inclusive of a substantial proportion of severe dengue cases. Our goal was to examine how well the current WHO definition identified new dengue cases at our febrile surveillance sites in Kenya. Between 2014 and 2019 as part of a child cohort study of febrile illness in our four clinical study sites (Ukunda, Kisumu, Msambweni, Chulaimbo) we identified 369 dengue PCR positive symptomatic cases and characterized whether they met the 2009 revised WHO diagnostic criteria for dengue with and without warning signs and severe dengue. We found 62% of our PCR-confirmed dengue cases did not meet criteria per the guidelines. Our findings also correlate with our experience that dengue disease in children in Kenya is less severe as reported in other parts of the world. Although the 2009 clinical classification has recently been criticized for being overly inclusive and non-specific, our findings suggest the 2009 WHO dengue case definition may miss more than 50% of symptomatic infections in Kenya and may require further modification to include the African experience.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA