Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
PLoS Biol ; 19(12): e3001480, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914695

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas de Unión al GTP rab/metabolismo , Anciano , Animales , Transporte Biológico , Cuerpo Estriado , Mutación con Ganancia de Función/genética , Células HEK293 , Humanos , Hierro/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas , Transferrina/metabolismo , Transferrinas/genética , Transferrinas/metabolismo , Proteínas de Unión al GTP rab/genética
3.
Neurobiol Dis ; 169: 105721, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35405260

RESUMEN

In recent years progress in molecular biology and genetics have advanced our understanding of neurological disorders and highlighted synergistic relationships with inflammatory and age-related processes. Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Increasing extensive evidence supports the contribution of genetic risk variants and inflammation in the pathobiology of this disease. Functional and genetic studies demonstrate an overlap between genes linked to increased risk for PD and autoimmune diseases. Variants identified in loci adjacent to LRRK2, GBA, and HLA establish a crosstalk between the pathobiologies of the two disease spectra. Furthermore, common signalling pathways associated with the pathogenesis of genetic PD are also relevant to inflammatory signaling include MAPK, NF-κB, Wnt and inflammasome signaling. Importantly, post-mortem analyses of brain and cerebrospinal fluid from PD patients show the accumulation of proinflammatory cytokines. In this review we will focus on the principal mechanisms of genetic, inflammatory and age-related risk that intersect in the pathogenesis of PD.


Asunto(s)
Enfermedad de Parkinson , Neuronas Dopaminérgicas/metabolismo , Humanos , Inmunidad Innata/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Porción Compacta de la Sustancia Negra/metabolismo , Transducción de Señal/genética
4.
Neurobiol Dis ; 141: 104948, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32434048

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are an established cause of inherited Parkinson's disease (PD). LRRK2 is expressed in both neurons and glia in the central nervous system, but its physiological function(s) in each of these cell types is uncertain. Through sequential screens, we report a functional interaction between LRRK2 and Clathrin adaptor protein complex 2 (AP2). Analysis of LRRK2 KO tissue revealed a significant dysregulation of AP2 complex components, suggesting LRRK2 may act upstream of AP2. In line with this hypothesis, expression of LRRK2 was found to modify recruitment and phosphorylation of AP2. Furthermore, expression of LRRK2 containing the R1441C pathogenic mutation resulted in impaired clathrin-mediated endocytosis (CME). A decrease in activity-dependent synaptic vesicle endocytosis was also observed in neurons harboring an endogenous R1441C LRRK2 mutation. Alongside LRRK2, several PD-associated genes intersect with membrane-trafficking pathways. To investigate the genetic association between Clathrin-trafficking and PD, we used polygenetic risk profiling from IPDGC genome wide association studies (GWAS) datasets. Clathrin-dependent endocytosis genes were found to be associated with PD across multiple cohorts, suggesting common variants at these loci represent a cumulative risk factor for disease. Taken together, these findings suggest CME is a LRRK2-mediated, PD relevant pathway.


Asunto(s)
Complejo 2 de Proteína Adaptadora/metabolismo , Endocitosis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , Fosforilación , Vesículas Sinápticas/metabolismo
5.
Hum Mol Genet ; 27(18): 3257-3271, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29917075

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) segregate with familial Parkinson's disease (PD) and genetic variation around LRRK2 contributes to risk of sporadic disease. Although knockout (KO) of Lrrk2 or knock-in of pathogenic mutations into the mouse germline does not result in a PD phenotype, several defects have been reported in the kidneys of Lrrk2 KO mice. To understand LRRK2 function in vivo, we used an unbiased approach to determine which protein pathways are affected in LRRK2 KO kidneys. We nominated changes in cytoskeletal-associated proteins, lysosomal proteases, proteins involved in vesicular trafficking and in control of protein translation. Changes were not seen in mice expressing the pathogenic G2019S LRRK2 mutation. Using cultured epithelial kidney cells, we replicated the accumulation of lysosomal proteases and demonstrated changes in subcellular distribution of the cation-independent mannose-6-phosphate receptor. These results show that loss of LRRK2 leads to co-ordinated responses in protein translation and trafficking and argue against a dominant negative role for the G2019S mutation.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Biosíntesis de Proteínas/genética , Proteómica , Animales , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación de la Expresión Génica , Humanos , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Noqueados , Mutación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fenotipo , Proteolisis , Receptor IGF Tipo 2/genética , Transducción de Señal
6.
Neurobiol Dis ; 129: 67-78, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31102768

RESUMEN

Several previous studies have linked the Parkinson's disease (PD) gene LRRK2 to the biology of microglia cells. However, the precise ways in which LRRK2 affects microglial function have not been fully resolved. Here, we used the RNA-Sequencing to obtain transcriptomic profiles of LRRK2 wild-type (WT) and knock-out (KO) microglia cells treated with α-synuclein pre-formed fibrils (PFFs) or lipopolysaccharide (LPS) as a general inflammatory insult. We observed that, although α-synuclein PFFs and LPS mediate overlapping gene expression profiles in microglia, there are also distinct responses to each stimulus. α-Synuclein PFFs trigger alterations of oxidative stress-related pathways with the mitochondrial dismutase Sod2 as a strongly differentially regulated gene. We validated SOD2 at mRNA and protein levels. Furthermore, we found that LRRK2 KO microglia cells reported attenuated induction of mitochondrial SOD2 in response to α-synuclein PFFs, indicating a potential contribution of LRRK2 to oxidative stress-related pathways. We validate several genes in vivo using single-cell RNA-Seq from acutely isolated microglia after striatal injection of LPS into the mouse brain. Overall, these results suggest that microglial LRRK2 may contribute to the pathogenesis of PD via altered oxidative stress signaling.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Microglía/metabolismo , Estrés Oxidativo/fisiología , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/toxicidad , Animales , Perfilación de la Expresión Génica , Humanos , Inflamación/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
7.
Biochem Soc Trans ; 47(2): 651-661, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30837320

RESUMEN

The past two decades in research has revealed the importance of leucine-rich repeat kinase 2 (LRRK2) in both monogenic and sporadic forms of Parkinson's disease (PD). In families, mutations in LRRK2 can cause PD with age-dependent but variable penetrance and genome-wide association studies have found variants of the gene that are risk factors for sporadic PD. Functional studies have suggested that the common mechanism that links all disease-associated variants is that they increase LRRK2 kinase activity, albeit in different ways. Here, we will discuss the roles of LRRK2 in areas of inflammation and vesicular trafficking in the context of monogenic and sporadic PD. We will also provide a hypothetical model that links inflammation and vesicular trafficking together in an effort to outline how these pathways might interact and eventually lead to neuronal cell death. We will also highlight the translational potential of LRRK2-specific kinase inhibitors for the treatment of PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Estudio de Asociación del Genoma Completo/métodos , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación/genética
8.
Neurochem Res ; 44(6): 1446-1459, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30291536

RESUMEN

Mutations in the Leucine-rich repeat kinase 2 (LRRK2) gene have been implicated in the pathogenesis of Parkinson's disease (PD). Identification of PD-associated LRRK2 mutations has led to the development of novel animal models, primarily in mice. However, the characteristics of human LRRK2 and mouse Lrrk2 protein have not previously been directly compared. Here we show that proteins from different species have different biochemical properties, with the mouse protein being more stable but having significantly lower kinase activity compared to the human orthologue. In examining the effects of PD-associated mutations and risk factors on protein function, we found that conserved substitutions such as G2019S affect human and mouse LRRK2 proteins similarly, but variation around position 2385, which is not fully conserved between humans and mice, induces divergent in vitro behavior. Overall our results indicate that structural differences between human and mouse LRRK2 are likely responsible for the different properties we have observed for these two species of LRRK2 protein. These results have implications for disease modelling of LRRK2 mutations in mice and on the testing of pharmacological therapies in animals.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Animales , Técnicas de Sustitución del Gen , Células HEK293 , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Mutación , Fosforilación/fisiología , Estabilidad Proteica , Proteínas de Unión al GTP rab , Proteínas de Unión al GTP rab1/metabolismo
9.
Hum Mol Genet ; 23(18): 4887-905, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24794857

RESUMEN

Mutations in LRRK2 are one of the primary genetic causes of Parkinson's disease (PD). LRRK2 contains a kinase and a GTPase domain, and familial PD mutations affect both enzymatic activities. However, the signaling mechanisms regulating LRRK2 and the pathogenic effects of familial mutations remain unknown. Identifying the signaling proteins that regulate LRRK2 function and toxicity remains a critical goal for the development of effective therapeutic strategies. In this study, we apply systems biology tools to human PD brain and blood transcriptomes to reverse-engineer a LRRK2-centered gene regulatory network. This network identifies several putative master regulators of LRRK2 function. In particular, the signaling gene RGS2, which encodes for a GTPase-activating protein (GAP), is a key regulatory hub connecting the familial PD-associated genes DJ-1 and PINK1 with LRRK2 in the network. RGS2 expression levels are reduced in the striata of LRRK2 and sporadic PD patients. We identify RGS2 as a novel interacting partner of LRRK2 in vivo. RGS2 regulates both the GTPase and kinase activities of LRRK2. We show in mammalian neurons that RGS2 regulates LRRK2 function in the control of neuronal process length. RGS2 is also protective against neuronal toxicity of the most prevalent mutation in LRRK2, G2019S. We find that RGS2 regulates LRRK2 function and neuronal toxicity through its effects on kinase activity and independently of GTPase activity, which reveals a novel mode of action for GAP proteins. This work identifies RGS2 as a promising target for interfering with neurodegeneration due to LRRK2 mutations in PD patients.


Asunto(s)
Redes Reguladoras de Genes , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas RGS/metabolismo , Animales , Encéfalo/metabolismo , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Neuronas/metabolismo , Proteínas Oncogénicas/metabolismo , Enfermedad de Parkinson/sangre , Proteína Desglicasa DJ-1 , Proteínas Quinasas/metabolismo , Biología de Sistemas/métodos , Transcriptoma
10.
J Biol Chem ; 289(31): 21386-400, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24942733

RESUMEN

Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a common genetic cause of Parkinson disease, but the mechanisms whereby LRRK2 is regulated are unknown. Phosphorylation of LRRK2 at Ser(910)/Ser(935) mediates interaction with 14-3-3. Pharmacological inhibition of its kinase activity abolishes Ser(910)/Ser(935) phosphorylation and 14-3-3 binding, and this effect is also mimicked by pathogenic mutations. However, physiological situations where dephosphorylation occurs have not been defined. Here, we show that arsenite or H2O2-induced stresses promote loss of Ser(910)/Ser(935) phosphorylation, which is reversed by phosphatase inhibition. Arsenite-induced dephosphorylation is accompanied by loss of 14-3-3 binding and is observed in wild type, G2019S, and kinase-dead D2017A LRRK2. Arsenite stress stimulates LRRK2 self-association and association with protein phosphatase 1α, decreases kinase activity and GTP binding in vitro, and induces translocation of LRRK2 to centrosomes. Our data indicate that signaling events induced by arsenite and oxidative stress may regulate LRRK2 function.


Asunto(s)
Proteínas 14-3-3/metabolismo , Arsenitos/farmacología , Regulación hacia Abajo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Fosforilación , Unión Proteica
11.
Biochim Biophys Acta ; 1833(12): 2900-2910, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23916833

RESUMEN

Leucine Rich Repeat Kinase 2 (LRRK2) is one of the most important genetic contributors to Parkinson's disease. LRRK2 has been implicated in a number of cellular processes, including macroautophagy. To test whether LRRK2 has a role in regulating autophagy, a specific inhibitor of the kinase activity of LRRK2 was applied to human neuroglioma cells and downstream readouts of autophagy examined. The resulting data demonstrate that inhibition of LRRK2 kinase activity stimulates macroautophagy in the absence of any alteration in the translational targets of mTORC1, suggesting that LRRK2 regulates autophagic vesicle formation independent of canonical mTORC1 signaling. This study represents the first pharmacological dissection of the role LRRK2 plays in the autophagy/lysosomal pathway, emphasizing the importance of this pathway as a marker for LRRK2 physiological function. Moreover it highlights the need to dissect autophagy and lysosomal activities in the context of LRRK2 related pathologies with the final aim of understanding their aetiology and identifying specific targets for disease modifying therapies in patients.


Asunto(s)
Autofagia , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Astrocitos/enzimología , Autofagia/efectos de los fármacos , Benzodiazepinonas/farmacología , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inmunohistoquímica , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Pirimidinas/farmacología , Ratas , Proteína Sequestosoma-1
12.
Stem Cell Reports ; 19(2): 163-173, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38307024

RESUMEN

Mutations in the LRRK2 gene cause familial Parkinson's disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge upon a pathogenic increase in LRRK2 kinase activity. A subset of small RAB GTPases has been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in RAB inactivation. We used CRISPR-Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well-validated LRRK2 substrates, RAB8a and RAB10, from deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed opposing effects of RAB8a and RAB10 deficiency on lysosomal pH and Golgi organization, with isolated effects of RAB8a and RAB10 ablation on α-synuclein and tau, respectively. Our data demonstrate largely antagonistic effects of genetic RAB8a or RAB10 inactivation, which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation in human disease.


Asunto(s)
alfa-Sinucleína , Proteínas de Unión al GTP rab , Humanos , alfa-Sinucleína/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación , Neuronas/metabolismo , Fosforilación , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
13.
Neuropsychopharmacology ; 49(5): 824-836, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37684522

RESUMEN

The transition from hedonic alcohol drinking to problematic drinking is a hallmark of alcohol use disorder that occurs only in a subset of drinkers. This transition requires long-lasting changes in the synaptic drive and the activity of striatal neurons expressing dopamine D1 receptor (D1R). The molecular mechanisms that generate vulnerability in some individuals to undergo the transition are less understood. Here, we report that the Parkinson's-related protein leucine-rich repeat kinase 2 (LRRK2) modulates striatal D1R function to affect the behavioral response to alcohol and the likelihood that mice transition to heavy, persistent alcohol drinking. Constitutive deletion of the Lrrk2 gene specifically from D1R-expressing neurons potentiated D1R signaling at the cellular and synaptic level and enhanced alcohol-related behaviors and drinking. Mice with cell-specific deletion of Lrrk2 were more prone to heavy alcohol drinking, and consumption was insensitive to punishment. These findings identify a potential novel role for LRRK2 function in the striatum in promoting resilience against heavy and persistent alcohol drinking.


Asunto(s)
Cuerpo Estriado , Neostriado , Ratones , Animales , Leucina/metabolismo , Neostriado/metabolismo , Cuerpo Estriado/metabolismo , Consumo de Bebidas Alcohólicas , Etanol/farmacología , Receptores de Dopamina D1/metabolismo , Sesgo
14.
Neurobiol Dis ; 58: 183-90, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23747310

RESUMEN

Mutations in LRRK2 are the most common genetic cause of Parkinson's disease (PD). The most prevalent LRRK2 mutation is the G2019S coding change, located in the kinase domain of this complex multi-domain protein. The majority of G2019S autopsy cases feature typical Lewy Body pathology with a clinical phenotype almost indistinguishable from idiopathic PD (iPD). Here we have investigated the biochemical characteristics of α-synuclein in G2019S LRRK2 PD post-mortem material, in comparison to pathology-matched iPD. Immunohistochemistry with pS129 α-synuclein antibody showed that the medulla is heavily affected with pathology in G2019S PD whilst the basal ganglia (BG), limbic and frontal cortical regions demonstrated comparable pathology scores between G2019S PD and iPD. Significantly lower levels of the highly aggregated α-synuclein species in urea-SDS fractions were observed in G2019S cases compared to iPD in the BG and limbic cortex. Our data, albeit from a small number of cases, highlight a difference in the biochemical properties of aggregated α-synuclein in G2019S linked PD compared to iPD, despite a similar histopathological presentation. This divergence in solubility is most notable in the basal ganglia, a region that is affected preclinically and is damaged before overt dopaminergic cell death.


Asunto(s)
Encéfalo/metabolismo , Cuerpos de Lewy/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/genética , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Femenino , Regulación de la Expresión Génica/genética , Glicina/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Masculino , Enfermedad de Parkinson/clasificación , Cambios Post Mortem , Serina/genética
15.
Biochem Biophys Res Commun ; 441(4): 862-6, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24211199

RESUMEN

LRRK2 is one of the most important genetic contributors to Parkinson's disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consistently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data highlight the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations.


Asunto(s)
Autofagia/genética , Lisosomas/genética , Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/fisiología , Dominio Catalítico/genética , Técnicas de Cultivo de Célula , Femenino , Fibroblastos , Marcadores Genéticos , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Enfermedad de Parkinson/patología , Mutación Puntual , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína
16.
Handb Clin Neurol ; 193: 33-51, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36803821

RESUMEN

Parkinson's disease (PD) remains one of the most prevalent neurodegenerative disorders. It has become increasingly recognized that PD is not one disease but a constellation of many, with distinct cellular mechanisms driving pathology and neuronal loss in each given subtype. Endolysosomal trafficking and lysosomal degradation are crucial to maintain neuronal homeostasis and vesicular trafficking. It is clear that deficits in endolysosomal signaling data support the existence of an endolysosomal PD subtype. This chapter describes how cellular pathways involved in endolysosomal vesicular trafficking and lysosomal degradation in neurons and immune cells can contribute to PD. Last, as inflammatory processes including phagocytosis and cytokine release are central in glia-neuron interactions, a spotlight on the role of neuroinflammation plays in the pathogenesis of this PD subtype is also explored.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Endosomas/metabolismo , Endosomas/patología , Lisosomas/metabolismo , Lisosomas/patología , Neuronas/patología
17.
bioRxiv ; 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37163109

RESUMEN

Mutations in the LRRK2 gene cause familial Parkinson's disease presenting with pleomorphic neuropathology that can involve α-synuclein or tau accumulation. LRRK2 mutations are thought to converge toward a pathogenic increase in LRRK2 kinase activity. A subset of small Rab GTPases have been identified as LRRK2 substrates, with LRRK2-dependent phosphorylation resulting in Rab inactivation. We used CRISPR/Cas9 genome editing to generate a novel series of isogenic iPSC lines deficient in the two most well validated LRRK2 substrates, Rab8a and Rab10, from two independent, deeply phenotyped healthy control lines. Thorough characterization of NGN2-induced neurons revealed divergent effects of Rab8a and Rab10 deficiency on lysosomal pH, LAMP1 association with Golgi, α-synuclein insolubility and tau phosphorylation, while parallel effects on lysosomal numbers and Golgi clustering were observed. Our data demonstrate largely antagonistic effects of genetic Rab8a or Rab10 inactivation which provide discrete insight into the pathologic features of their biochemical inactivation by pathogenic LRRK2 mutation.

18.
NPJ Parkinsons Dis ; 9(1): 104, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393318

RESUMEN

Almost 2 decades after linking LRRK2 to Parkinson's disease, a vibrant research field has developed around the study of this gene and its protein product. Recent studies have begun to elucidate molecular structures of LRRK2 and its complexes, and our understanding of LRRK2 has continued to grow, affirming decisions made years ago to therapeutically target this enzyme for PD. Markers of LRRK2 activity, with potential to monitor disease progression or treatment efficacy, are also under development. Interestingly, there is a growing understanding of the role of LRRK2 outside of the central nervous system in peripheral tissues such as gut and immune cells that may also contribute to LRRK2 mediated pathology. In this perspective, our goal is to take stock of LRRK2 research by discussing the current state of knowledge and critical open questions in the field.

19.
bioRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37745519

RESUMEN

Introduction: Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene cause autosomal dominant Parkinson's disease (PD) with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggest involvement of microglia and macrophages in inflammation related to PD. LRRK2 is known to respond to extracellular signalling including TLR4 resulting in alterations in gene expression, with the response to TLR2 signalling through zymosan being less known. Methods: Here, we investigated the effects of zymosan, a TLR2 agonist and the potent and specific LRRK2 kinase inhibitor MLi-2 on gene expression in microglia from LRRK2-WT and LRRK2 p.G2019S knock-in mice by RNA-Sequencing analysis. Results: We observed both overlapping and distinct zymosan and MLi-2 mediated gene expression profiles in microglia. At least two candidate Genome-Wide Association (GWAS) hits for PD, CathepsinB (Ctsb) and Glycoprotein-nmb (Gpnmb), were notably downregulated by zymosan treatment. Genes involved in inflammatory response and nervous system development were up and downregulated respectively with zymosan treatment while MLi-2 treatment particularly exhibited upregulated genes for ion transmembrane transport regulation. Furthermore, we observed the top twenty most significantly differentially expressed genes in LRRK2 p.G2019S microglia show enriched biological processes in iron transport and response to oxidative stress. Discussion: Overall, these results suggest that microglial LRRK2 may contribute to PD pathogenesis through altered inflammatory pathways. Our findings should encourage future investigations of these putative avenues in the context of PD pathogenesis.

20.
Cells ; 13(1)2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38201257

RESUMEN

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause autosomal dominant Parkinson's disease (PD), with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggests involvement of microglia and macrophages in inflammation related to PD. LRRK2 is known to respond to extracellular signalling including TLR4, resulting in alterations in gene expression, with the response to TLR2 signalling through zymosan being less known. Here, we investigated the effects of zymosan, a TLR2 agonist and the potent and specific LRRK2 kinase inhibitor MLi-2 on gene expression in microglia from LRRK2-WT and LRRK2 p.G2019S knock-in mice by RNA-sequencing analysis. We observed both overlapping and distinct zymosan and MLi-2 mediated gene expression profiles in microglia. At least two candidate genome-wide association (GWAS) hits for PD, CathepsinB (Ctsb) and Glycoprotein-nmb (Gpnmb), were notably downregulated by zymosan treatment. Genes involved in inflammatory response and nervous system development were up and downregulated, respectively, with zymosan treatment, while MLi-2 treatment particularly exhibited upregulated genes for ion transmembrane transport regulation. Furthermore, we observed that the top twenty most significantly differentially expressed genes in LRRK2 p.G2019S microglia show enriched biological processes in iron transport and response to oxidative stress. Overall, these results suggest that microglial LRRK2 may contribute to PD pathogenesis through altered inflammatory pathways. Our findings should encourage future investigations of these putative avenues in the context of PD pathogenesis.


Asunto(s)
Microglía , Enfermedad de Parkinson , Humanos , Animales , Ratones , Zimosan/farmacología , Estudio de Asociación del Genoma Completo , Receptor Toll-Like 2/genética , Enfermedad de Parkinson/genética , Expresión Génica , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA