Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Hepatol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879173

RESUMEN

BACKGROUND & AIMS: Biliary complications are a major cause of morbidity and mortality in liver transplantation. Up to 25% of patients that develop biliary complications require additional surgical procedures, re-transplantation or die in the absence of a suitable regraft. Here, we investigate the role of the primary cilium, a highly-specialised sensory organelle, in biliary injury leading to post-transplant biliary complications. METHODS: Human biopsies were used to study the structure and function of primary cilia in liver transplant recipients that develop biliary complications (N=7) in comparison with recipients without biliary complications (N=12). To study the biological effects of the primary cilia during transplantation, we generated murine models that recapitulate liver procurement and cold storage, and assessed the elimination of the primary cilia in biliary epithelial cells in the K19CreERTKif3aflox/flox mouse model. To explore the molecular mechanisms responsible for the observed phenotypes we used in vitro models of ischemia, cellular senescence and primary cilia ablation. Finally, we used pharmacological and genetic approaches to target cellular senescence and the primary cilia, both in mouse models and discarded human donor livers. RESULTS: Prolonged ischemic periods before transplantation result in ciliary shortening and cellular senescence, an irreversible cell cycle arrest that blocks regeneration. Our results indicate that primary cilia damage results in biliary injury and a loss of regenerative potential. Senescence negatively impacts primary cilia structure and triggers a negative feedback loop that further impairs regeneration. Finally, we explore how targeted interventions for cellular senescence and/or the stabilisation of the primary cilia improve biliary regeneration following ischemic injury. CONCLUSIONS: Primary cilia play an essential role in biliary regeneration and we demonstrate that senolytics and cilia-stabilising treatments provide a potential therapeutic opportunity to reduce the rate of biliary complications and improve clinical outcomes in liver transplantation. IMPACT AND IMPLICATIONS: Up to 25% of liver transplants result in biliary complications, leading to additional surgery, retransplants, or death. We found that the incidence of biliary complications is increased by damage to the primary cilium, an antenna that protrudes from the cell and is key to regeneration. Here, we show that treatments that preserve the primary cilia during the transplant process provide a potential solution to reduce the rates of biliary complications.

3.
Nature ; 547(7663): 350-354, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28700576

RESUMEN

After liver injury, regeneration occurs through self-replication of hepatocytes. In severe liver injury, hepatocyte proliferation is impaired-a feature of human chronic liver disease. It is unclear whether other liver cell types can regenerate hepatocytes. Here we use two independent systems to impair hepatocyte proliferation during liver injury to evaluate the contribution of non-hepatocytes to parenchymal regeneration. First, loss of ß1-integrin in hepatocytes with liver injury triggered a ductular reaction of cholangiocyte origin, with approximately 25% of hepatocytes being derived from a non-hepatocyte origin. Second, cholangiocytes were lineage traced with concurrent inhibition of hepatocyte proliferation by ß1-integrin knockdown or p21 overexpression, resulting in the significant emergence of cholangiocyte-derived hepatocytes. We describe a model of combined liver injury and inhibition of hepatocyte proliferation that causes physiologically significant levels of regeneration of functional hepatocytes from biliary cells.


Asunto(s)
Conductos Biliares Intrahepáticos/citología , Hepatocitos/patología , Regeneración Hepática , Hígado/citología , Hígado/patología , Células Madre/citología , Animales , Linaje de la Célula , Proliferación Celular , Femenino , Integrina beta1/genética , Hígado/lesiones , Hepatopatías/patología , Masculino , Ratones , Ratones Endogámicos C57BL
4.
J Hepatol ; 74(4): 860-872, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33221352

RESUMEN

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a cancer of the hepatic bile ducts that is rarely resectable and is associated with poor prognosis. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) is known to signal via its receptor fibroblast growth factor-inducible 14 (Fn14) and induce cholangiocyte and myofibroblast proliferation in liver injury. We aimed to characterise its role in CCA. METHODS: The expression of the TWEAK ligand and Fn14 receptor was assessed immunohistochemically and by bulk RNA and single cell transcriptomics of human liver tissue. Spatiotemporal dynamics of pathway regulation were comprehensively analysed in rat and mouse models of thioacetamide (TAA)-mediated CCA. Flow cytometry, qPCR and proteomic analyses of CCA cell lines and conditioned medium experiments with primary macrophages were performed to evaluate the downstream functions of TWEAK/Fn14. In vivo pathway manipulation was assessed via TWEAK overexpression in NICD/AKT-induced CCA or genetic Fn14 knockout during TAA-mediated carcinogenesis. RESULTS: Our data reveal TWEAK and Fn14 overexpression in multiple human CCA cohorts, and Fn14 upregulation in early TAA-induced carcinogenesis. TWEAK regulated the secretion of factors from CC-SW-1 and SNU-1079 CCA cells, inducing polarisation of proinflammatory CD206+ macrophages. Pharmacological blocking of the TWEAK downstream target chemokine monocyte chemoattractant protein 1 (MCP-1 or CCL2) significantly reduced CCA xenograft growth, while TWEAK overexpression drove cancer-associated fibroblast proliferation and collagen deposition in the tumour niche. Genetic Fn14 ablation significantly reduced inflammatory, fibrogenic and ductular responses during carcinogenic TAA-mediated injury. CONCLUSION: These novel data provide evidence for the action of TWEAK/Fn14 on macrophage recruitment and phenotype, and cancer-associated fibroblast proliferation in CCA. Targeting TWEAK/Fn14 and its downstream signals may provide a means to inhibit CCA niche development and tumour growth. LAY SUMMARY: Cholangiocarcinoma is an aggressive, chemotherapy-resistant liver cancer. Interactions between tumour cells and cells that form a supportive environment for the tumour to grow are a source of this aggressiveness and resistance to chemotherapy. Herein, we describe interactions between tumour cells and their supportive environment via a chemical messenger, TWEAK and its receptor Fn14. TWEAK/Fn14 alters the recruitment and type of immune cells in tumours, increases the growth of cancer-associated fibroblasts in the tumour environment, and is a potential target to reduce tumour formation.


Asunto(s)
Neoplasias de los Conductos Biliares , Quimiocina CCL2/metabolismo , Colangiocarcinoma , Citocina TWEAK/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Carcinogénesis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Descubrimiento de Drogas , Humanos , Ratones , Ratas , Transducción de Señal , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
5.
J Hepatol ; 73(2): 349-360, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32169610

RESUMEN

BACKGROUND & AIM: Following acetaminophen (APAP) overdose, acute liver injury (ALI) can occur in patients that present too late for N-acetylcysteine treatment, potentially leading to acute liver failure, systemic inflammation, and death. Macrophages influence the progression and resolution of ALI due to their innate immunological function and paracrine activity. Syngeneic primary bone marrow-derived macrophages (BMDMs) were tested as a cell-based therapy in a mouse model of APAP-induced ALI (APAP-ALI). METHODS: Several phenotypically distinct BMDM populations were delivered intravenously to APAP-ALI mice when hepatic necrosis was established, and then evaluated based on their effects on injury, inflammation, immunity, and regeneration. In vivo phagocytosis assays were used to interrogate the phenotype and function of alternatively activated BMDMs (AAMs) post-injection. Finally, primary human AAMs sourced from healthy volunteers were evaluated in immunocompetent APAP-ALI mice. RESULTS: BMDMs rapidly localised to the liver and spleen within 4 h of administration. Injection of AAMs specifically reduced hepatocellular necrosis, HMGB1 translocation, and infiltrating neutrophils following APAP-ALI. AAM delivery also stimulated proliferation in hepatocytes and endothelium, and reduced levels of several circulating proinflammatory cytokines within 24 h. AAMs displayed a high phagocytic activity both in vitro and in injured liver tissue post-injection. Crosstalk with the host innate immune system was demonstrated by reduced infiltrating host Ly6Chi macrophages in AAM-treated mice. Importantly, therapeutic efficacy was partially recapitulated using clinical-grade primary human AAMs in immunocompetent APAP-ALI mice, underscoring the translational potential of these findings. CONCLUSION: We identify that AAMs have value as a cell-based therapy in an experimental model of APAP-ALI. Human AAMs warrant further evaluation as a potential cell-based therapy for APAP overdose patients with established liver injury. LAY SUMMARY: After an overdose of acetaminophen (paracetamol), some patients present to hospital too late for the current antidote (N-acetylcysteine) to be effective. We tested whether macrophages, an injury-responsive leukocyte that can scavenge dead/dying cells, could serve as a cell-based therapy in an experimental model of acetaminophen overdose. Injection of alternatively activated macrophages rapidly reduced liver injury and reduced several mediators of inflammation. Macrophages show promise to serve as a potential cell-based therapy for acute liver injury.


Asunto(s)
Acetaminofén/envenenamiento , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Enfermedad Hepática Inducida por Sustancias y Drogas , Macrófagos , Comunicación Paracrina/inmunología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocinas/sangre , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Péptidos y Proteínas de Señalización Intercelular , Regeneración Hepática/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Fagocitosis , Resultado del Tratamiento
6.
Hepatology ; 67(6): 2167-2181, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29251794

RESUMEN

A hallmark of chronic liver injury is fibrosis, with accumulation of extracellular matrix orchestrated by activated hepatic stellate cells (HSCs). Glucocorticoids limit HSC activation in vitro, and tissue glucocorticoid levels are amplified by 11beta-hydroxysteroid dehydrogenase-1 (11ßHSD1). Although 11ßHSD1 inhibitors have been developed for type 2 diabetes mellitus and improve diet-induced fatty liver in various mouse models, effects on the progression and/or resolution of liver injury and consequent fibrosis have not been characterized. We have used the reversible carbon tetrachloride-induced model of hepatocyte injury and liver fibrosis to show that in two models of genetic 11ßHSD1 deficiency (global, Hsd11b1-/- , and hepatic myofibroblast-specific, Hsd11b1fl/fl /Pdgfrb-cre) 11ßHSD1 pharmacological inhibition in vivo exacerbates hepatic myofibroblast activation and liver fibrosis. In contrast, liver injury and fibrosis in hepatocyte-specific Hsd11b1fl/fl /albumin-cre mice did not differ from that of controls, ruling out 11ßHSD1 deficiency in hepatocytes as the cause of the increased fibrosis. In primary HSC culture, glucocorticoids inhibited expression of the key profibrotic genes Acta2 and Col1α1, an effect attenuated by the 11ßHSD1 inhibitor [4-(2-chlorophenyl-4-fluoro-1-piperidinyl][5-(1H-pyrazol-4-yl)-3-thienyl]-methanone. HSCs from Hsd11b1-/- and Hsd11b1fl/fl /Pdgfrb-cre mice expressed higher levels of Acta2 and Col1α1 and were correspondingly more potently activated. In vivo [4-(2-chlorophenyl-4-fluoro-1-piperidinyl][5-(1H-pyrazol-4-yl)-3-thienyl]-methanone administration prior to chemical injury recapitulated findings in Hsd11b1-/- mice, including greater fibrosis. CONCLUSION: 11ßHSD1 deficiency enhances myofibroblast activation and promotes initial fibrosis following chemical liver injury; hence, the effects of 11ßHSD1 inhibitors on liver injury and repair are likely to be context-dependent and deserve careful scrutiny as these compounds are developed for chronic diseases including metabolic syndrome and dementia. (Hepatology 2018;67:2167-2181).


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasas/deficiencia , Cirrosis Hepática/etiología , Miofibroblastos/fisiología , Animales , Modelos Animales de Enfermedad , Hepatocitos , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Proc Natl Acad Sci U S A ; 113(43): 12250-12255, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27791012

RESUMEN

The prognosis of cholangiocarcinoma (CC) is dismal. Notch has been identified as a potential driver; forced exogenous overexpression of Notch1 in hepatocytes results in the formation of biliary tumors. In human disease, however, it is unknown which components of the endogenously signaling pathway are required for tumorigenesis, how these orchestrate cancer, and how they can be targeted for therapy. Here we characterize Notch in human-resected CC, a toxin-driven model in rats, and a transgenic mouse model in which p53 deletion is targeted to biliary epithelia and CC induced using the hepatocarcinogen thioacetamide. We find that across species, the atypical receptor NOTCH3 is differentially overexpressed; it is progressively up-regulated with disease development and promotes tumor cell survival via activation of PI3k-Akt. We use genetic KO studies to show that tumor growth significantly attenuates after Notch3 deletion and demonstrate signaling occurs via a noncanonical pathway independent of the mediator of classical Notch, Recombinant Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). These data present an opportunity in this aggressive cancer to selectively target Notch, bypassing toxicities known to be RBPJ dependent.


Asunto(s)
Carcinogénesis/genética , Colangiocarcinoma/genética , Neoplasias Experimentales/genética , Pronóstico , Receptor Notch3/genética , Animales , Colangiocarcinoma/patología , Humanos , Región de Unión de la Inmunoglobulina/genética , Ratones , Ratones Transgénicos , Neoplasias Experimentales/patología , Fosfatidilinositol 3-Quinasas/genética , Ratas , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
8.
Brain Behav Immun ; 69: 223-234, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29162555

RESUMEN

Chronically elevated glucocorticoid levels impair cognition and are pro-inflammatory in the brain. Deficiency or inhibition of 11ß-hydroxysteroid dehydrogenase type-1 (11ß-HSD1), which converts inactive into active glucocorticoids, protects against glucocorticoid-associated chronic stress- or age-related cognitive impairment. Here, we hypothesised that 11ß-HSD1 deficiency attenuates the brain cytokine response to inflammation. Because inflammation is associated with altered energy metabolism, we also examined the effects of 11ß-HSD1 deficiency upon hippocampal energy metabolism. Inflammation was induced in 11ß-HSD1 deficient (Hsd11b1Del/Del) and C57BL/6 control mice by intraperitoneal injection of lipopolysaccharide (LPS). LPS reduced circulating neutrophil and monocyte numbers and increased plasma corticosterone levels equally in C57BL/6 and Hsd11b1Del/Del mice, suggesting a similar peripheral inflammatory response. However, the induction of pro-inflammatory cytokine mRNAs in the hippocampus was attenuated in Hsd11b1Del/Del mice. Principal component analysis of mRNA expression revealed a distinct metabolic response to LPS in hippocampus of Hsd11b1Del/Del mice. Expression of Pfkfb3 and Ldha, key contributors to the Warburg effect, showed greater induction in Hsd11b1Del/Del mice. Consistent with increased glycolytic flux, levels of 3-phosphoglyceraldehyde and dihydroxyacetone phosphate were reduced in hippocampus of LPS injected Hsd11b1Del/Del mice. Expression of Sdha and Sdhb, encoding subunits of succinate dehydrogenase/complex II that determines mitochondrial reserve respiratory capacity, was induced specifically in hippocampus of LPS injected Hsd11b1Del/Del mice, together with increased levels of its product, fumarate. These data suggest 11ß-HSD1 deficiency attenuates the hippocampal pro-inflammatory response to LPS, associated with increased capacity for aerobic glycolysis and mitochondrial ATP generation. This may provide better metabolic support and be neuroprotective during systemic inflammation or aging.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Metabolismo Energético/fisiología , Hipocampo/metabolismo , Inflamación/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Corticosterona/sangre , Hipocampo/efectos de los fármacos , Conducta de Enfermedad/efectos de los fármacos , Conducta de Enfermedad/fisiología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Monocitos/metabolismo , Neutrófilos/metabolismo
9.
FASEB J ; 27(4): 1519-31, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23303209

RESUMEN

11ß-Hydroxysteroid dehydrogenase type-1 (11ß-HSD1) converts inert cortisone into active cortisol, amplifying intracellular glucocorticoid action. 11ß-HSD1 deficiency improves cardiovascular risk factors in obesity but exacerbates acute inflammation. To determine the effects of 11ß-HSD1 deficiency on atherosclerosis and its inflammation, atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice were treated with a selective 11ß-HSD1 inhibitor or crossed with 11ß-HSD1-KO mice to generate double knockouts (DKOs) and challenged with an atherogenic Western diet. 11ß-HSD1 inhibition or deficiency attenuated atherosclerosis (74-76%) without deleterious effects on plaque structure. This occurred without affecting plasma lipids or glucose, suggesting independence from classical metabolic risk factors. KO plaques were not more inflamed and indeed had 36% less T-cell infiltration, associated with 38% reduced circulating monocyte chemoattractant protein-1 (MCP-1) and 36% lower lesional vascular cell adhesion molecule-1 (VCAM-1). Bone marrow (BM) cells are key to the atheroprotection, since transplantation of DKO BM to irradiated ApoE-KO mice reduced atherosclerosis by 51%. 11ß-HSD1-null macrophages show 76% enhanced cholesterol ester export. Thus, 11ß-HSD1 deficiency reduces atherosclerosis without exaggerated lesional inflammation independent of metabolic risk factors. Selective 11ß-HSD1 inhibitors promise novel antiatherosclerosis effects over and above their benefits for metabolic risk factors via effects on BM cells, plausibly macrophages.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/deficiencia , Aterosclerosis/metabolismo , Médula Ósea/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Aterosclerosis/genética , Médula Ósea/efectos de los fármacos , Glucocorticoides/metabolismo , Ratones , Ratones Noqueados , Factores de Riesgo , Molécula 1 de Adhesión Celular Vascular/metabolismo
10.
Cell Stem Cell ; 29(3): 355-371.e10, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245467

RESUMEN

Biliary diseases can cause inflammation, fibrosis, bile duct destruction, and eventually liver failure. There are no curative treatments for biliary disease except for liver transplantation. New therapies are urgently required. We have therefore purified human biliary epithelial cells (hBECs) from human livers that were not used for liver transplantation. hBECs were tested as a cell therapy in a mouse model of biliary disease in which the conditional deletion of Mdm2 in cholangiocytes causes senescence, biliary strictures, and fibrosis. hBECs are expandable and phenotypically stable and help restore biliary structure and function, highlighting their regenerative capacity and a potential alternative to liver transplantation for biliary disease.


Asunto(s)
Trasplante de Hígado , Animales , Conductos Biliares/patología , Células Epiteliales/patología , Fibrosis , Humanos , Donadores Vivos , Ratones
11.
Sci Transl Med ; 14(674): eabj4375, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36475903

RESUMEN

Liver transplantation is the only curative option for patients with end-stage liver disease. Despite improvements in surgical techniques, nonanastomotic strictures (characterized by the progressive loss of biliary tract architecture) continue to occur after liver transplantation, negatively affecting liver function and frequently leading to graft loss and retransplantation. To study the biological effects of organ preservation before liver transplantation, we generated murine models that recapitulate liver procurement and static cold storage. In these models, we explored the response of cholangiocytes and hepatocytes to cold storage, focusing on responses that affect liver regeneration, including DNA damage, apoptosis, and cellular senescence. We show that biliary senescence was induced during organ retrieval and exacerbated during static cold storage, resulting in impaired biliary regeneration. We identified decoy receptor 2 (DCR2)-dependent responses in cholangiocytes and hepatocytes, which differentially affected the outcome of those populations during cold storage. Moreover, CRISPR-mediated DCR2 knockdown in vitro increased cholangiocyte proliferation and decreased cellular senescence but had the opposite effect in hepatocytes. Using the p21KO model to inhibit senescence onset, we showed that biliary tract architecture was better preserved during cold storage. Similar results were achieved by administering senolytic ABT737 to mice before procurement. Last, we perfused senolytics into discarded human donor livers and showed that biliary architecture and regenerative capacities were better preserved. Our results indicate that cholangiocytes are susceptible to senescence and identify the use of senolytics and the combination of senotherapies and machine-perfusion preservation to prevent this phenotype and reduce the incidence of biliary injury after transplantation.


Asunto(s)
Sistema Biliar , Humanos , Ratones , Animales , Constricción Patológica , Senescencia Celular
12.
Am J Physiol Endocrinol Metab ; 300(6): E1076-84, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21406612

RESUMEN

Increased dietary fat intake is associated with obesity, insulin resistance, and metabolic disease. In transgenic mice, adipose tissue-specific overexpression of the glucocorticoid-amplifying enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) exacerbates high-fat (HF) diet-induced visceral obesity and diabetes, whereas 11ß-HSD1 gene knockout ameliorates this, favoring accumulation of fat in nonvisceral depots. Paradoxically, in normal mice HF diet-induced obesity (DIO) is associated with marked downregulation of adipose tissue 11ß-HSD1 levels. To identify the specific dietary fats that regulate adipose 11ß-HSD1 and thereby impact upon metabolic disease, we either fed mice diets enriched (45% calories as fat) in saturated (stearate), monounsaturated (oleate), or polyunsaturated (safflower oil) fats ad libitum or we pair fed them a low-fat (11%) control diet for 4 wk. Adipose and liver mass and glucocorticoid receptor and 11ß-HSD1 mRNA and activity levels were determined. Stearate caused weight loss and hypoinsulinemia, partly due to malabsorption, and this markedly increased plasma corticosterone levels and adipose 11ß-HSD1 activity. Oleate induced pronounced weight gain and hyperinsulinemia in association with markedly low plasma corticosterone and adipose 11ß-HSD1 activity. Weight gain and hyperinsulinemia was less pronounced with safflower compared with oleate despite comparable suppression of plasma corticosterone and adipose 11ß-HSD1. However, with pair feeding, safflower caused a selective reduction in visceral fat mass and relative insulin sensitization without affecting plasma corticosterone or adipose 11ß-HSD1. The dynamic depot-selective relationship between adipose 11ß-HSD1 and fat mass strongly implicates a dominant physiological role for local tissue glucocorticoid reactivation in fat mobilization.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/biosíntesis , Tejido Adiposo/enzimología , Tejido Adiposo/fisiología , Composición Corporal/fisiología , Dieta , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , Adiposidad , Animales , Corticosterona/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Ácidos Grasos/farmacología , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Insaturados/farmacología , Heces/química , Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/fisiología , Resistencia a la Insulina/fisiología , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , ARN/biosíntesis , ARN/genética , Receptores de Glucocorticoides/biosíntesis , Receptores de Glucocorticoides/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Aumento de Peso/efectos de los fármacos
13.
Sci Signal ; 14(688)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158399

RESUMEN

In the adult liver, a population of facultative progenitor cells called biliary epithelial cells (BECs) proliferate and differentiate into cholangiocytes and hepatocytes after injury, thereby restoring liver function. In mammalian models of chronic liver injury, Notch signaling is essential for bile duct formation from these cells. However, the continual proliferation of BECs and differentiation of hepatocytes in these models have limited their use for determining whether Notch signaling is required for BECs to replenish hepatocytes after injury in the mammalian liver. Here, we used a temporally restricted model of hepatic repair in which large-scale hepatocyte injury and regeneration are initiated through the acute loss of Mdm2 in hepatocytes, resulting in the rapid, coordinated proliferation of BECs. We found that transient, early activation of Notch1- and Notch3-mediated signaling and entrance into the cell cycle preceded the phenotypic expansion of BECs into hepatocytes. Notch inhibition reduced BEC proliferation, which resulted in failure of BECs to differentiate into hepatocytes, indicating that Notch-dependent expansion of BECs is essential for hepatocyte regeneration. Notch signaling increased the abundance of the insulin-like growth factor 1 receptor (IGF1R) in BECs, and activating IGFR signaling increased BEC numbers but suppressed BEC differentiation into hepatocytes. These results suggest that different signaling mechanisms control BEC expansion and hepatocyte differentiation.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Regeneración Hepática , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Células Epiteliales , Hepatocitos , Factor I del Crecimiento Similar a la Insulina/genética , Hígado
14.
Nat Commun ; 9(1): 1020, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523787

RESUMEN

Cellular senescence is a mechanism that provides an irreversible barrier to cell cycle progression to prevent undesired proliferation. However, under pathological circumstances, senescence can adversely affect organ function, viability and regeneration. We have developed a mouse model of biliary senescence, based on the conditional deletion of Mdm2 in bile ducts under the control of the Krt19 promoter, that exhibits features of biliary disease. Here we report that senescent cholangiocytes induce profound alterations in the cellular and signalling microenvironment, with recruitment of myofibroblasts and macrophages causing collagen deposition, TGFß production and induction of senescence in surrounding cholangiocytes and hepatocytes. Finally, we study how inhibition of TGFß-signalling disrupts the transmission of senescence and restores liver function. We identify cellular senescence as a detrimental mechanism in the development of biliary injury. Our results identify TGFß as a potential therapeutic target to limit senescence-dependent aggravation in human cholangiopathies.


Asunto(s)
Conductos Biliares/lesiones , Conductos Biliares/patología , Senescencia Celular/fisiología , Colangitis Esclerosante/patología , Cirrosis Hepática Biliar/patología , Hígado/patología , Regeneración/fisiología , Animales , Células Cultivadas , Colangitis Esclerosante/terapia , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Hepatocitos/patología , Humanos , Queratina-19/genética , Cirrosis Hepática Biliar/terapia , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miofibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo
15.
J Endocrinol ; 234(3): 291-299, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28676523

RESUMEN

11ß-Hydroxysteroid dehydrogenase-1 (11ß-HSD1) predominantly converts inert glucocorticoids into active forms, thereby contributing to intracellular glucocorticoid levels. 11ß-HSD1 is dynamically regulated during inflammation, including in macrophages where it regulates phagocytic capacity. The resolution of inflammation in some disease models including inflammatory arthritis is impaired by 11ß-HSD1 deficiency or inhibition. However, 11ß-HSD1 deficiency/inhibition also promotes angiogenesis, which is beneficial in mouse models of surgical wound healing, myocardial infarction or obesity. The cell types responsible for the anti-inflammatory and anti-angiogenic roles of 11ß-HSD1 have not been characterised. Here, we generated Hsd11b1MKO mice with LysM-Cre mediated deletion of Hsd11b1 to investigate whether 11ß-HSD1 deficiency in myeloid phagocytes is pro-angiogenic and/or affects the resolution of inflammation. Resolution of inflammatory K/BxN-induced arthritis was impaired in Hsd11b1MKO mice to a similar extent as in mice globally deficient in 11ß-HSD1. This was associated with >2-fold elevation in levels of the endothelial marker Cdh5 mRNA, suggesting increased angiogenesis in joints of Hsd11b1MKO mice following arthritis. A pro-angiogenic phenotype was confirmed by measuring angiogenesis in subcutaneously implanted polyurethane sponges, in which Hsd11b1MKO mice showed 20% greater vessel density than their littermate controls, associated with higher expression of Cdh5 Thus, 11ß-HSD1 deficiency in myeloid phagocytes promotes angiogenesis. Targeting 11ß-HSD1 in macrophages may be beneficial in tissue repair.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/deficiencia , Inflamación/enzimología , Macrófagos/enzimología , Neovascularización Patológica/enzimología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/inmunología , Animales , Humanos , Inflamación/genética , Inflamación/inmunología , Macrófagos/inmunología , Ratones , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología
16.
Nat Cell Biol ; 17(8): 971-983, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26192438

RESUMEN

Hepatocytes and cholangiocytes self-renew following liver injury. Following severe injury hepatocytes are increasingly senescent, but whether hepatic progenitor cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where the E3 ubiquitin ligase Mdm2 is inducibly deleted in more than 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease.


Asunto(s)
Conductos Biliares/trasplante , Linaje de la Célula , Proliferación Celular , Células Epiteliales/trasplante , Hepatocitos/trasplante , Regeneración Hepática , Hígado , Trasplante de Células Madre , Células Madre , Animales , Apoptosis , Conductos Biliares/metabolismo , Conductos Biliares/patología , Biomarcadores/metabolismo , Separación Celular , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Genotipo , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , Fenotipo , Proteínas Proto-Oncogénicas c-mdm2/deficiencia , Proteínas Proto-Oncogénicas c-mdm2/genética , Células Madre/metabolismo , Células Madre/patología , Factores de Tiempo
17.
J Immunol ; 176(12): 7605-11, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16751407

RESUMEN

Glucocorticoids promote macrophage phagocytosis of leukocytes undergoing apoptosis. Prereceptor metabolism of glucocorticoids by 11beta-hydroxysteroid dehydrogenases (11beta-HSDs) modulates cellular steroid action. 11beta-HSD type 1 amplifies intracellular levels of active glucocorticoids in mice by reactivating corticosterone from inert 11-dehydrocorticosterone in cells expressing the enzyme. In this study we describe the rapid (within 3 h) induction of 11beta-HSD activity in cells elicited in the peritoneum by a single thioglycolate injection in mice. Levels remained high in peritoneal cells until resolution. In vitro experiments on mouse macrophages demonstrated that treatment with inert 11-dehydrocorticosterone for 24 h increased phagocytosis of apoptotic neutrophils to the same extent as corticosterone. This effect was dependent upon 11beta-HSD1, as 11beta-HSD1 mRNA, but not 11beta-HSD2 mRNA, was expressed in these cells; 11-dehydrocorticosterone was ineffective in promoting phagocytosis by Hsd11b1(-/-) macrophages, and carbenoxolone, an 11beta-HSD inhibitor, prevented the increase in phagocytosis elicited in wild-type macrophages by 11-dehydrocorticosterone. Importantly, as experimental peritonitis progressed, clearance of apoptotic neutrophils was delayed in Hsd11b1(-/-) mice. These data point to an early role for 11beta-HSD1 in promoting the rapid clearance of apoptotic cells during the resolution of inflammation and indicate a novel target for therapy.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/fisiología , Apoptosis/inmunología , Corticosterona/metabolismo , Macrófagos Peritoneales/inmunología , Neutrófilos/inmunología , Neutrófilos/patología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/biosíntesis , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/deficiencia , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/biosíntesis , Animales , Apoptosis/genética , Líquido Ascítico/enzimología , Líquido Ascítico/inmunología , Líquido Ascítico/patología , Células Cultivadas , Corticosterona/fisiología , Humanos , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Macrófagos Peritoneales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citología , Peritonitis/enzimología , Peritonitis/genética , Peritonitis/inmunología , Fagocitosis/genética , Fagocitosis/inmunología , Tioglicolatos/administración & dosificación , Regulación hacia Arriba/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA