Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Proteomics ; 14: 13, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28450823

RESUMEN

BACKGROUND: X-linked retinoschisis (XLRS) is a vitreoretinal degenerative disorder causing vision deterioration, due to structural defects in retina. The hallmark of this disease includes radial streaks arising from the fovea and splitting of inner retinal layers (schisis). Although these retinal changes are attributed to mutations in the retinoschisin gene, schisis is also observed in patients who do not carry mutations. In addition, the origin of intraschisis fluid, the triggering point of schisis formation and its progression are largely unknown still. So far, there is no report on the complete proteomic analysis of this fluid. Schisis fluid proteome could reflect biochemical changes in the disease condition, helping in better understanding and management of retinoschisis. Therefore it was of interest to investigate the intraschisis fluid proteome using high-resolution mass spectrometry. METHODS: Two male XLRS patients (aged 4 and 40 years) underwent clinical and genetic evaluation followed by surgical extraction of intraschisis fluids. The two fluid samples were resolved on a SDS-PAGE and the processed peptides were analyzed by Q-Exactive plus hybrid quadrupole-Orbitrap mass spectrometry. Functional annotation of the identified proteins was performed using Ingenuity pathway analysis software. RESULTS: Mass spectrometry analysis detected 770 nonredundant proteins in the intraschisis fluid. Retinol dehydrogenase 14 was found to be abundant in the schisis fluid. Gene ontology based analysis indicated that 19% of the intraschisis fluid proteins were localized to the extracellular matrix and 15% of the proteins were involved in signal transduction. Functional annotation identified three primary canonical pathways to be associated with the schisis fluid proteome viz., LXR/RXR activation, complement system and acute phase response signalling, which are involved in immune and inflammatory responses. Collectively, our results show that intraschisis fluid comprises specific inflammatory proteins which highly reflect the disease environment. CONCLUSION: Based on our study, it is suggested that inflammation might play a key role in the pathogenesis of XLRS. To our knowledge, this is the first report describing the complete proteome of intraschisis fluid, which could serve as a template for future research and facilitate the development of therapeutic modalities for XLRS.

2.
J Proteome Res ; 13(7): 3166-77, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24960282

RESUMEN

Chromosome-centric human proteome project (C-HPP) is a global initiative to comprehensively characterize proteins encoded by genes across all human chromosomes by teams focusing on individual chromosomes. Here, we report mass spectrometry-based identification and characterization of proteins encoded by genes on chromosome 12. Our study is based on proteomic profiling of 30 different histologically normal human tissues and cell types using high-resolution mass spectrometry. In our analysis, we identified 1,535 proteins encoded by 836 genes on human chromosome 12. This includes 89 genes that are designated as "missing proteins" by "neXtProt" as they did not have any prior evidence either by mass spectrometry or by antibody-based detection methods. We identified several variant peptides that reflected coding SNPs annotated in dbSNP database. We also confirmed the start sites of ∼200 proteins by identifying protein N-terminal acetylated peptides. We also identified alternative start sites for 11 proteins that were not annotated in public databases until now. Most importantly, we identified 12 novel protein coding regions on chromosome 12 using our proteogenomics strategy. All of the 12 regions have been annotated as pseudogenes in public databases. This study demonstrates that there is scope for significantly improving annotation of protein coding genes in the human genome using mass-spectrometry-derived data. Individual efforts as part of C-HPP initiative should significantly contribute toward enriching human protein annotation. The data have been deposited to ProteomeXchange with identifier PXD000561.


Asunto(s)
Cromosomas Humanos Par 12/genética , Proteoma/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Femenino , Humanos , Masculino , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , Proteoma/fisiología , ARN no Traducido/genética , Espectrometría de Masas en Tándem
3.
Clin Proteomics ; 11(1): 29, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25097467

RESUMEN

BACKGROUND: The vitreous humor is a transparent, gelatinous mass whose main constituent is water. It plays an important role in providing metabolic nutrient requirements of the lens, coordinating eye growth and providing support to the retina. It is in close proximity to the retina and reflects many of the changes occurring in this tissue. The biochemical changes occurring in the vitreous could provide a better understanding about the pathophysiological processes that occur in vitreoretinopathy. In this study, we investigated the proteome of normal human vitreous humor using high resolution Fourier transform mass spectrometry. RESULTS: The vitreous humor was subjected to multiple fractionation techniques followed by LC-MS/MS analysis. We identified 1,205 proteins, 682 of which have not been described previously in the vitreous humor. Most proteins were localized to the extracellular space (24%), cytoplasm (20%) or plasma membrane (14%). Classification based on molecular function showed that 27% had catalytic activity, 10% structural activity, 10% binding activity, 4% cell and 4% transporter activity. Categorization for biological processes showed 28% participate in metabolism, 20% in cell communication and 13% in cell growth. The data have been deposited to the ProteomeXchange with identifier PXD000957. CONCLUSION: This large catalog of vitreous proteins should facilitate biomedical research into pathological conditions of the eye including diabetic retinopathy, retinal detachment and cataract.

4.
Cancer Biol Ther ; 16(2): 336-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25756516

RESUMEN

Gastric cancer is one of the most common gastrointestinal malignancies and is associated with poor prognosis. Exploring alterations in the proteomic landscape of gastric cancer is likely to provide potential biomarkers for early detection and molecules for targeted therapeutic intervention. Using iTRAQ-based quantitative proteomic analysis, we identified 22 proteins that were overexpressed and 17 proteins that were downregulated in gastric tumor tissues as compared to the adjacent normal tissue. Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) was found to be 7-fold overexpressed in gastric tumor tissues. Immunohistochemical labeling of tumor tissue microarrays for validation of CAMKK2 overexpression revealed that it was indeed overexpressed in 94% (92 of 98) of gastric cancer cases. Silencing of CAMKK2 using siRNA significantly reduced cell proliferation, colony formation and invasion of gastric cancer cells. Our results demonstrate that CAMKK2 signals in gastric cancer through AMPK activation and suggest that CAMKK2 could be a novel therapeutic target in gastric cancer.


Asunto(s)
Adenocarcinoma/metabolismo , Antineoplásicos/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias Gástricas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/antagonistas & inhibidores , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Línea Celular Tumoral , Proliferación Celular , Activación Enzimática , Expresión Génica , Silenciador del Gen , Humanos , Inmunohistoquímica , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteoma , Proteómica , Reproducibilidad de los Resultados , Neoplasias Gástricas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA