RESUMEN
Mycotoxins, a natural food contaminant, are secondary metabolites of fungi. Aflatoxin B1 (AFB1) and ochratoxin A (OTA) are two major mycotoxins found in various food commodities. These mycotoxins are hepatotoxic, nephrotoxic, cytotoxic, mutagenic and carcinogenic, thus they are a public health concern and their monitoring in food commodities is necessary. There are several conventional techniques available for mycotoxin detection, such as HPLC, LCMS, and ELISA. However, extensive nature and huge cost allowances make it challenging to deploy these techniques for monitoring of mycotoxins in the large sample size. Therefore, a robust, responsive and high-throughput technique is required. Here, we aimed to develop a multiplexed Luminex suspension assay based on multi analyte profiling (xMAP) technology for the simultaneous detection of AFB1 and OTA in the black tea, which is found to be contaminated with these mycotoxins during the cultivation or processing steps. Limit of detection for AFB1 and OTA, was 0.06 ng/ml and 0.49 ng/ml, respectively without any cross-reactivity with other mycotoxins and this assay is suitable for simultaneous detection of AFB1 and OTA in the same sample. Collectively, based on the results, we suggest that the developed Luminex suspension assay is sensitive, accurate, rapid and suitable for high-throughput screening of multiple mycotoxins. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05848-3.
RESUMEN
Exposure to mycotoxins through the dietary route occurs on a daily basis while their deleterious effects are exhibited in the form of ailments, such as inflammation, cancer, and hormonal imbalance. The negative impact of mycotoxins can be attributed to their interaction with various biomolecules and their interference in metabolic pathways. The activity of biomolecules, such as enzymes/receptors, which engage the intricate mechanism of endogenous metabolism, is more susceptible to disruption by metabolites of high toxicity, which gives rise to adverse health effects. Metabolomics is a useful analytical approach that can assist in unraveling such information. It can simultaneously and comprehensively analyze a large number of endogenous and exogenous molecules present in biofluids and can, thus, reveal biologically relevant perturbations following mycotoxin exposure. Information provided by genome, transcriptome and proteome analyses, which have been utilized for the elucidation of biological mechanisms so far, are further complemented by the addition of metabolomics in the available bioanalytics toolbox. Metabolomics can offer insight into complex biological processes and their respective response to several (co-)exposures. This review focuses on the most extensively studied mycotoxins reported in literature and their respective impact on the metabolome upon exposure.
RESUMEN
In the search for immunoprophylactics for the control of human lymphatic filariasis, we recently identified troponin 1 (Tn1) in Brugia malayi adult worms. The present study reports the cloning and expression of the B. malayi Tn1 (Tn1bm), its immunoprophylactic efficacy against B. malayi infection, and the immunological responses of the host. The Tn1bm gene was cloned (Acc no. JF912447) and expressed, and the purified recombinant Tn1bm (rTn1bm) presented a single ~ 27 kDa band. Parasite load in rTn1bm-immunized BALB/c mice challenged with B. malayi infective larvae (L3) was assessed. In rTn1bm-immunized animals, IgE, IgG, and IgG subclasses in the serum, cell proliferative response, Th1 and Th2 cytokine secretion (from splenocytes), and NO release (from peritoneal macrophages) were determined. Antibody-dependent cell-mediated cytotoxicity (ADCC) to L3 was assayed using rTn1bm-immune serum. The innate immune response markers MHC class-I, MHC class-II, TLR2, TLR4, and TLR6 expression in peritoneal macrophages and CD3+, CD4+, CD8+, and CD19+ in the splenocyte population were determined in Tn1bm-exposed cells from naïve mice. rTn1bm-immunized L3-challenged animals showed a 60% reduction in parasite burden. Immunization upregulated cellular proliferation, cytokine (IFN-γ, TNF-α, IL-1ß, IL-4, IL-6, and IL-10) secretion, NO release, and antigen-specific IgG, IgG1, and IgG2b antibody levels. rTn1bm-immune serum killed > 65% of L3 in the ADCC assay. Increased MHC class-II, TLR2, and TLR6 expression and the relative CD4+ and CD19+ cell populations of naïve animal cells indicated the ability of rTn1bm to mobilize innate immune responses. This is the first report of the immunoprophylactic potential of rTn1bm against B. malayi.
Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Brugia Malayi/inmunología , Filariasis Linfática/inmunología , Filariasis Linfática/prevención & control , Troponina I/genética , Troponina I/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Brugia Malayi/genética , Clonación Molecular , Citocinas/sangre , Citocinas/inmunología , ADN Complementario/metabolismo , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Macrófagos Peritoneales/inmunología , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Células TH1/inmunología , Células Th2/inmunología , VacunaciónRESUMEN
Zearalenone (ZEA), has emerged as a potential endocrine-disrupting chemical (EDC). Previous results show ZEA effects on endometrial stromal cell apoptosis, migration, and growth of endometriosis. Despite the reported presence of ZEA in Endometrial Cancer (EC) patient's blood and tissues, ZEA-induced EC promotion and its mechanism/s remain elusive. In this study, Ishikawa cells were used to investigate the ZEA effects on Ishikawa cell migration, invasion, and the underlying mechanism involved in these events. Ishikawa cells were exposed to low concentrations of ZEA (5, 25, and 125 nM) for 48 h, and morphological alterations, migration, invasion, markers associated with epithelial-mesenchymal transition (EMT), E-cadherin, Vimentin, RhoA/ROCK/PMLC pathway activation were analyzed. ZEA (25 nM) exposure caused morphological alterations like stress fiber, filopodia formation, loss of cell adhesion, and a significant increase in migration and invasive potential in extracellular matrix-coated porous membranes. Moreover, ZEA exposure also increases the Rho-GTPase activity and expression of pathway mediators, GEFH1, RhoA, ROCK1+2, CDC42, and PMLC/MLC. Furthermore, pre-treatment with specific pharmacological inhibitors for Estrogen receptor-alpha (ER-α) and ROCK attenuate the ZEA-induced stress fiber formation and altered expression of E-cadherin, Vimentin, and Rho/ROCK/PMLC pathway mediators. These findings suggest that Rho/ROCK/PMLC signaling pathways are involved in ZEA-induced Ishikawa cell migration and invasion.
RESUMEN
Background: Zearalenone (ZEA), a natural food contaminant, is reported to act as a mycoestrogen due to its estrogen-mimicking properties. According to studies, ZEA has a greater potential for estrogenic activity compared to any other naturally occurring non-steroidal estrogen. ZEA has been found in the endometrium of individuals with reproductive problems and the serum of children facing early puberty. These studies suggested a possible link between ZEA exposure and endometrial toxicity; nonetheless, no thorough research has been done. This study assessed the endometrium's response to chronic ZEA exposure. Methods: Four groups of CD-1 female mice were exposed to control, estradiol (E2), and two different doses of ZEA for 90 days. At the end of treatment, blood and uterus were collected, and samples were used for inflammatory cytokines level, immunochemical, histopathological, and biophysical analysis. Results: Our data indicated that the uterus showed a change in body/organ weight ratio, while other organs did not have any notable changes. Immunochemical and histological studies showed hyperplasia and a higher number of glands in the endometrium after ZEA and E2 exposure. Similarly, proliferation markers such as proliferative cell nuclear antigen (PCNA), Ki-67, and inflammatory cytokines such as interleukin 6 (IL-6), interleukin 8 (IL-8), and interferon-gamma (IFN-?) levels were found to be higher in the E2 and ZEA-exposed groups. Conclusion: Our finding conclude that ZEA targets the uterus and cause inflammation due to increased levels of inflammatory cytokines and proliferation mediators, as well as systemic toxicity denoted by a strong binding affinity with serum proteins.
RESUMEN
PURPOSE: In search of a vaccine for the control of human lymphatic filariasis (LF) caused by Wuchereria bancrofti, Brugia malayi and B. timori, we identified three parasite-specific potential candidates: the disorganized muscle protein-1 (D), calponin (C) and troponin 1 (T) in B. malayi adult worm. In the present study, we investigated the immune response profile of the cocktails of the recombinant D, T and C proteins. METHODS: Groups of BALB/c mice were immunized with individual rproteins or their cocktails DT, TC, DC and DTC, and the immunogen-specific IgG and its subclasses and IgE were determined. Cells from the immunized animals were challenged in vitro with the respective rproteins and cocktails and the release of nitric oxide (NO) from macrophages and Th1 and Th2 cytokines from splenocytes were determined. RESULTS: Among the immunized groups, DTC elicited comparatively a stronger response which included augmented release of NO, Th1 (IL-1ß, IL-2, IFN-γ and TNF-α) and Th2 (IL-4, IL-6, IL-10 and TGF-ß) cytokines, and increased levels of immunogen-specific IgG, IgG1 and IgG2b and low levels of immunogen-specific IgG2a and IgE and the Th2 cytokine IL-13. CONCLUSION: Immune responses that play important role in host protection were elicited strongly by DTC cocktail compared to the individual rproteins or DT, TC and DC cocktails. The findings provide a sound rationale for further studies on DTC cocktail as a vaccine candidate for the control of LF.
Asunto(s)
Brugia Malayi , Vacunas , Ratones , Animales , Humanos , Ratones Endogámicos BALB C , Troponina I , Citocinas , Inmunoglobulina G , Inmunidad , Inmunoglobulina E , CalponinasRESUMEN
Immunoglobulin E (IgE)mediated allergy or hypersensitivity reactions are generally defined as an unwanted severe symptomatic immunological reaction that occurs due to shattered or untrained peripheral tolerance of the immune system. Allergenspecific immunotherapy (AIT) is the only therapeutic strategy that can provide a longerlasting symptomatic and clinical break from medications in IgEmediated allergy. Immunotherapies against allergic diseases comprise a successive increasing dose of allergen, which helps in developing the immune tolerance against the allergen. AITs exerttheirspecial effectiveness directly or indirectly by modulating the regulator and effector components of the immune system. The number of success stories of AIT is still limited and it canoccasionallyhave a severe treatmentassociated adverse effect on patients. Therefore, the formulation used for AIT should be appropriate and effective. The present review describes the chronological evolution of AIT, and provides a comparative account of the merits and demerits of different AITs by keeping in focus the critical guiding factors, such as sustained allergen tolerance, duration of AIT, probability of mild to severe allergic reactions and dose of allergen required to effectuate an effective AIT. The mechanisms by which regulatory T cells suppress allergenspecific effector T cells and how loss of natural tolerance against innocuous proteins induces allergy are reviewed. The present review highlights the major AIT bottlenecks and the importantregulatory requirements for standardized AIT formulations. Furthermore, the present reviewcalls attention to the problem of 'polyallergy', which is still a major challenge for AIT and the emerging concept of 'componentresolved diagnosis' (CRD) to address the issue. Finally, a prospective strategy for upgrading CRD to the next dimension is provided, and a potential technology for delivering thoroughly standardized AIT with minimal risk is discussed.
Asunto(s)
Hipersensibilidad , Inmunoglobulina E , Alérgenos , Desensibilización Inmunológica/métodos , Humanos , Hipersensibilidad/terapia , Estudios ProspectivosRESUMEN
Nexrutine (NX), a marketable herbal extract from a traditional Chinese herbal plant, Phellodendron amurense, is majorly used for the resolution of inflammation, gastroenteritis, and some tissue-specific cancer. Strategies for the identification of the safety of anticancer solutions of plant origin are an important area of study. The present investigation assesses the single and repeated dose (28 days) toxicity of NX following OECD guidelines 425 and 407, respectively. Briefly, to identify acute toxic properties of NX, a dose of 2000 mg/kg b. wt was administered once orally. Simultaneously, repeated dose toxicity was evaluated through daily administration of the three different doses (250, 500, 750 mg/kg b. wt) of NX for 28days. The single administration of NX showed no signs of toxicity and morbidity, suggesting LD50 of NX more than 2000 mg/kg b. wt. Furthermore, repeated dose exposure of NX for 28 days did not show any sign of toxicity. Hematology, serum biochemistry, and histopathological analysis also did not show any significant abnormalities. However, a marginal decrease in triglyceride, cholesterol, and glucose levels along with mild tubular degeneration in the kidney was also noticed in the high dose NX treatment group. Overall, the findings of the study suggest that NX is safe for use up to 500 mg/kg b.wt.
RESUMEN
BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is the commonest subtype of lymphoma in the elderly and poses unique challenges in this group of patients. There is a need for more information on real-world outcomes across economic disparities. METHODS: Electronic Medical Record of 3,087 lymphomas (>18 years) were evaluated retrospectively, of which 842 (27%) patients were ≥65 years. Two hundred and twelve patients who were ≥65 years received first line treatment for DLBCL between May 2011 and Dec 2016. Demography, clinical features, associated co-morbidities, first line treatment outcomes and hospital costs were analysed. Patients were followed up till March 2020. RESULTS: The median age at presentation was 71 years. Gender ratio was 2.5:1. 38% patients presented with early-stage disease, 37% with low and low-intermediate International prognostic index, 49% with nodal disease. One or more co-morbidities were present in 58%. The commonest extra nodal site was gastro-intestinal (29%). Two-thirds of the patients presented with non-Germinal centre B subtype. The overall response (OR) to treatment was 72.5%. Patients who received anthracycline-based therapy (n = 124) and rituximab-based therapy (n = 159) had a median progression free survival (PFS), not reached and 47.0 months, respectively, versus 10 months and 7.9 months, respectively, for patients receiving non-anthracycline and non-rituximab therapies. At a median follow-up of 24 months, the 5-year overall survival and PFS are 44% and 41%, respectively, for the entire cohort. CONCLUSIONS: DLBCL is a curable lymphoma in elderly patients with standard anthracycline and rituximab-based therapies. Improvement in outcomes largely depends on social and financial support to complete the scheduled treatments.
RESUMEN
Exposure to mycotoxins is mostly by ingestion but also occurs by the dermal and inhalation routes. The present study for the first time demonstrated that mycotoxin Deoxynivalenol (DON), permeates through Swiss albino mice skin, which demands awareness of health risks in people who are dermally exposed to mycotoxins especially agricultural farmers. Despite the widespread contamination of DON in food commodities studies to alleviate DON's toxicity are sparsely reported. Thus effective measures to combat mycotoxins associated toxicity remains an imperative aspect to be considered from the angle of dermal exposure. Topical application of Celecoxib (1-2 mg), followed by DON (100 µg) application on the dorsal side of mice, resulted in substantial decrease in DON-induced (i) edema, hyperplasia, cell proliferation (ii) inhibition of cytokine and prostaglandin-E2 levels (iii) phosphorylation of ERK1/2, JNK, p38, MAPKKs, CREB, P90-RSK (iv) downregulation of c-Jun, c- Fos, phospho-NF-kB and their downstream target proteins cyclin D1 and COX-2. Using Ro-31-8220 (Protein-Kinase-C inhibitor), it was observed PKC was responsible for DON induced upregulation of COX-2 and iNOS proteins. Treatment of Celecoxib decreased DON-induced translocation of Protein Kinase C isozymes (α,ε,γ), demonstrating the role of PKC in DON-mediated biochemical and molecular alterations responsible for its dermal toxicity. The present findings indicate that topical application of celecoxib is effective in the management of inflammatory skin disorders induced by foodborne fungal toxin DON. The skin permeation potential of Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor NSAID, was also assessed, and the results indicated that the permeation was relatively lower as compared to the oral mode of administration. Hence topical use of celecoxib may be preferred over oral dosing because of lower systemic absorption and to avoid the unwanted side effects. This study provides a prospect for exploring the clinical efficacy of topically applied COX-2 inhibitors for the management of inflammatory skin disorders induced by foodborne fungal toxins.
Asunto(s)
Celecoxib/farmacología , Proliferación Celular/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Proteína Quinasa C/metabolismo , Piel/efectos de los fármacos , Tricotecenos/efectos adversos , Animales , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Femenino , Inflamación/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Piel/metabolismo , Enfermedades de la Piel/tratamiento farmacológico , Enfermedades de la Piel/metabolismoRESUMEN
Consumption of edible oils contaminated with Argemone oil (AO) leads to a clinical condition called "Epidemic dropsy". Earlier studies have reported that metabolism and oxidative stress primarily contributes to AO toxicity, however, the involvement of immune system has not been assessed so far. Therefore, the present study was undertaken to systematically assess the effect of AO exposure on the function of immune system in Balb/c mice. The repeated exposure of AO for 28 days caused prominent regression of spleen and thymus; severe inflammatory changes in spleen depicted by the loss of distinct follicles, increased megakaryocyte infiltration, and enhanced expression levels of inflammatory markers (iNOS & COX-2). At the functional level, AO exposure significantly abrogated the mixed lymphocyte reaction and mitogen-stimulated lymphoproliferative activity of T and B cells, which is reflective of profound lymphocyte dysfunction upon antigen exposure. In concordance with the loss in functional activity of lymphocytes in AO exposed animals, it was found the AO altered the relative percentage of CD3+, CD4+, and CD28â¯+â¯T cells. Further, there was a marked decrease in the relative distribution of cells with prominent MHC I and CD1d expression in AO exposed splenocytes. Moreover, reduced levels of immune stimulatory cytokines (TNF-α, IFN-γ, IL-2, IL-4, and IL-6), and increased levels of immunosuppressive cytokine IL-10 were detected in the serum of AO treated mice. Along with T and B cells, AO exposure also affected the phenotype and activation status of macrophages suggesting the inclination towards "alternative activation of macrophages". Altogether, these functional changes in the immune cells are contributing factors in AO induced immunosuppression.
Asunto(s)
Tolerancia Inmunológica/efectos de los fármacos , Aceites de Plantas/toxicidad , Bazo/efectos de los fármacos , Timo/efectos de los fármacos , Administración Oral , Animales , Antígenos CD1d/metabolismo , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Proliferación Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Femenino , Citometría de Flujo , Interleucinas/sangre , Intestinos/patología , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa de Tipo II/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Timo/metabolismo , Timo/patología , Factor de Necrosis Tumoral alfa/sangreRESUMEN
Pefloxacin (PFLX) is an antibiotic, which shows broad spectrum antimicrobial activities. It is an important derivative of fluoroquinolones (FLQs) group. Ultraviolet radiation (200-400nm) causes major problem for living being which comes at the earth surface naturally through sunlight and increasing regularly due to ozone depletion. PFLX was photodegraded in 5h and forms photoproduct under UVA exposure. At the non photocytotoxic dose PFLX, shows reduced phagocytosis activity, NO (nitric oxide) production, large vacuole formation and down regulated IL-6, TNF-α and IL-1 in BALB/c macrophages at both genes and proteins levels. At higher doses (photocytotoxic doses), PFLX induced a concentration dependent decrease in cell viability of human keratinocyte cell line (HaCaT) and peritoneal macrophages of BALB/c mice. Our molecular docking suggests that PFLX binds only to the cleaved DNA in the DNA-human TOP2A complex. Topoisomerase assay confirmed that PFLX inhibits human topoisomerase by forming an adduct with DNA. Photosensitized PFLX also caused intracellular ROS mediated DNA damage and formation of micronuclei and cyclobutane pyrimidine dimers (CPDs). Increase intracellular ROS leads to apoptosis which was proved through lysosomal destabilization and reduced mitochondrial membrane potential (MMP). Our present study shows that ambient UVA exposure in the presence of PFLX caused immunomodulatory as well as photogenotoxic effects. Therefore, patients under PFLX drug treatment should avoid sunlight exposure, especially during peak hours for their photosafety.
Asunto(s)
Daño del ADN/efectos de los fármacos , Pefloxacina/química , Fármacos Fotosensibilizantes/química , Rayos Ultravioleta , Animales , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Sitios de Unión , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Células Cultivadas , ADN/química , ADN/metabolismo , Daño del ADN/efectos de la radiación , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/metabolismo , Femenino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de la radiación , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Ratones , Simulación del Acoplamiento Molecular , Pefloxacina/toxicidad , Fármacos Fotosensibilizantes/toxicidad , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Dímeros de Pirimidina/análisis , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Our prior studies have reported that Benzanthrone (BA) manifests inflammatory responses in the spleen of Balb/c mice. The present investigation was carried out to study the impact of BA on macrophages, which are the primary scavenger cells in the body that act as a connecting link between innate and adaptive immunity. Parenteral administration of BA (daily for one week) to mice resulted in enhanced levels of nitric oxide (NO) and overexpression of inflammatory markers (COX-2, MMP-9 and PGE-2) in macrophages; however the level of MHC class-I and MHC class-II receptors were down regulated. Further, the potential membrane receptor targets (TLRs) of BA and its interaction with TLRs was investigated using computational methods. Professional phagocytes play pivotal roles in sensing bacteria through pathogen-associated molecular patterns (PAMPs) by various pathogen recognition receptors (PRRs), including Toll-like receptors (TLRs). Several studies have implicated these TLRs in the amplification of the inflammatory responses, however the fundamental role played by TLRs in mediating the inflammation associated with xenobiotics is still obscure and not understood. From the in silico analysis, it was evident that BA showed the highest binding affinity with TLR4 as compared to other TLRs. The western blotting studies confirmed that BA exposure indeed upregulated the expression of TLR 4, 5 and 9. Moreover, the downstream signaling cascade proteins of TLRs such as myeloid differentiation primary response protein-88 (MyD88), IL-1 receptor associated kinase (IRAK-1), and TNFR-associated factor (TRAF-6) were found to be enhanced in the BA treated groups. It was also observed that BA treatment increased the expression of ICAM-1, p-Lyn, p-Syk, p-PI3-K, IP3, PLC-γ, cAMP and Ca+2 influx, which are known to play a critical role in TLR mediated inflammation. Earlier we found that toxic effects of BA in spleen were mediated by oxidative stress which was partially neutralized by NAC exposure. Hereby, we report that NAC treatment in conjunction with BA attenuated the expression of BA induced TLR4, as well as the inflammatory markers such as COX2 and p-NFkB in macrophages. These findings demonstrated the critical role of TLRs in the regulation of the BA-induced inflammation.
Asunto(s)
Benzo(a)Antracenos/toxicidad , Contaminantes Ambientales/toxicidad , Inflamación/inducido químicamente , Macrófagos Peritoneales/efectos de los fármacos , Receptor Toll-Like 4/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Benzo(a)Antracenos/metabolismo , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/metabolismo , Femenino , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Unión Proteica , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Regulación hacia ArribaRESUMEN
Glycation of food allergens may alter their immunological behaviour. We sought to investigate the impact of glycation on the allergenicity of a food protein. Herein, a chickpea protein (≈26kDa) was purified and characterized as lectin. Further, glycation of this purified protein was carried out. Thereafter, allergic behaviour of this glycated protein was compared with its native form, using various allergic parameters in Balb/c mice. The reduced allergenicity of glycated protein was observed as lesser allergic phenotypes, reduced serum immunoglobulins and allergic mediators, lower mast cells and eosinophil counts, lower protein expressions of Th2 cytokines and associated transcription factors. In addition, more Th1 and less Th2 cytokine production in exposed splenocyte, were evident in the glycated protein treated mice as compared to its native protein treatment. Thus, glycation of the chickpea allergen attenuated the sensitizing potential and allergic responses in Balb/c mice significantly and could also be clinically beneficial.
Asunto(s)
Cicer/química , Cicer/inmunología , Hipersensibilidad a los Alimentos , Alérgenos , Animales , Citocinas , Ratones , Ratones Endogámicos BALB CRESUMEN
Rhein, the most toxic anthraquinone moiety in Cassia occidentalis seeds, has been associated with hepatomyoencephalopathy (HME) in children. Structural and functional alterations in the lymphoid organs have been reported both in HME patients and experimental animals indicating a possibility of the dysfunction of immune system following exposure to CO seeds or its toxic anthraquinones (Panigrahi et al., 2014a). In the present study the mechanism of immune response of Rhein in splenocytes has been investigated by measuring functional assays of lymphocyte, cell surface receptor expression and analysis of cytokine levels. Results indicate that Rhein at a maximum dose of 10 µM is non cytotoxic up to 72 h in splenocytes. In addition to its potential to decrease the allogenic response of T-cells, Rhein significantly suppresses the proliferation of the concavalin A (Con A) and lipopolysaccharide (LPS) stimulated splenocytes. Lymphocyte receptor expression analysis revealed that Rhein exposure significantly down regulate the expression of CD3e, CD4, CD8, CD28, CD69 molecules in T-cells. The expression of CD19, CD28, CD40 in B-cells were also found to be significantly decreased following Rhein exposure. In accordance with the functional responses, Rhein treatment significantly lowered the expression of IL2 and IL6 cytokines in Con A stimulated splenocytes, and IL6, IL10, IFNγ and TNFα in LPS stimulated splenocytes. Over all, the study suggests the immunomodulatory activity of Rhein and that it would be useful in understanding the immune response of CO seeds in human subjects.
Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antraquinonas/farmacología , Senna/química , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Femenino , Prueba de Cultivo Mixto de Linfocitos , Ratones , Ratones Endogámicos BALB C , Receptores de Superficie Celular/biosíntesis , Receptores de Superficie Celular/efectos de los fármacos , Semillas/química , Bazo/efectos de los fármacos , Bazo/inmunologíaRESUMEN
AIMS: Uprising reports towards deltamethrin (DLM)-induced toxicity in non-target species including mammals have raised a worldwide concern. Moreover, in the absence of any identified marker, the prediction of DLM elicited early toxic manifestations in non-targets remains elusive. MAIN METHODS: Comprehensive approach of proteome profiling along with conventional toxico-physiological correlation analysis was performed to classify novel protein based markers in the plasma of DLM exposed Wistar rats. Animals were exposed orally to DLM (low dose: 2.56mg/kg b.wt. and high dose: 5.12mg/kg b.wt.) up to seven consecutive days. KEY FINDINGS: The UPLC-MS/MS analysis revealed a dose-dependent dissemination of DLM and its primary metabolite (3-Phenoxy benzoic acid) in rat plasma. Through 2-DE-MS/MS plasma profiling and subsequent verification at the transcriptional level, we found that 6 liver emanated acute phase proteins (Apolipoprotein-AIV, Apolipoprotein E, Haptoglobin, Hemopexin, Vitamin D Binding protein, and Fibrinogen gamma chain) were significantly (p<0.05) modulated in DLM treated groups in a dose-dependent manner. Accordingly, DLM exposure resulted in adverse effects on body growth (body weight & relative organ weight), serum profile, liver function and histology, inflammatory changes (enhanced TNF-É, TGF-ß and IL6 level), and oxidative stress. Moreover, these toxic manifestations were suppressed upon N-acetyl cysteine (NAC) supplementation in DLM treated animals. Thus, DLM-induced inflammatory response and subsequent oxidative injury to liver grounds the altered expression of identified acute phase proteins. SIGNIFICANCE: In conclusion, we proposed these six liver emanated plasma proteins as novel candidate markers to assess the early DLM-induced hepatotoxicity in non-target species with a minimal invasive mean.
Asunto(s)
Proteínas Sanguíneas/metabolismo , Hígado/efectos de los fármacos , Nitrilos/toxicidad , Plaguicidas/toxicidad , Piretrinas/toxicidad , Animales , Masculino , Ratas , Ratas WistarRESUMEN
Benzanthrone (BA) is an important dye intermediate which is used in the manufacturing of several polycyclic vat and disperse dyes in textile industries. Several studies have indicated that the general population is also exposed to BA owing to its release from furnace effluents and automobile exhausts in the environment. In several clinical studies, it has been shown that workers exposed to BA developed itching, burning sensation, erythema and hyperpigmentation of the skin, which could be an outcome of the dysregulated immune response. In this study, we have used female Balb/c mice as a model to study the immuno-inflammatory changes after systemic administration of BA (7.5mg/kgb.w. and 15mg/kgb.w.) for one week. BA exposed animals exhibited the signs of intense systemic inflammation as evident by enhanced DTH response, MPO activity, hyperplastic and dysplastic histopathological organization of spleen and lung tissue. Splenic evaluation revealed enhanced oxidative stress, upregulation of prominent inflammatory markers like iNOS and COX-2 and DNA damage. In coherence with the observed immuno-inflammatory alterations, the levels of several inflammatory and regulatory cytokines (IL-17, TNF-α, IFN-γ, IL-1, IL-10, IL-4) were significantly enhanced in serum as well as the spleen. In addition, BA administration significantly induced the activation of ERK1/2, p38, JNK MAPKs and their downstream transcription factors AP-1 (c-fos, c-jun), NF-κB and Nrf2 which comprise important mechanistic pathways involved in inflammatory manifestations. These results suggest the immunotoxic nature of the BA and have implications for the risk assessment and management of occupational workers, and even common masses considering its presence as an environmental contaminant.