Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Occup Environ Hyg ; 21(4): 213-219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38416517

RESUMEN

Personal protective equipment (PPE) is designed to protect firefighters from hazards encountered on the fire scene, including heat and products of combustion. Decontamination practices for firefighter turnout gear have been developed to remove combustion products and other contaminants from the fabric of structural firefighting ensembles (i.e., turnout or bunker gear). Chronic exposures to residual polycyclic aromatic hydrocarbons (PAH) are a contributing cause of firefighter cancers. To identify and quantify residual contamination of PAH, samples were taken from two individual decommissioned structural firefighting ensembles and analyzed by layer (outer canvas shell, moisture barrier, and the thermal protective liner) for (1) textile integrity via field emission scanning electron microscopy and (2) quantity of PAH contamination by high-pressure liquid chromatography with ultraviolet/fluorescence detection. The results of these analyses show the presence of the PAH compounds pyrene (35% of the total mass of PAH), phenanthrene (21%), benzo(a)pyrene (14%), and benzo(a)anthracene (14%) which present a risk for dermal absorption. The data also revealed that PAH penetration through the layers of the firefighting ensemble was strongly inhibited by the moisture barrier layer.


Asunto(s)
Contaminantes Ocupacionales del Aire , Bomberos , Exposición Profesional , Hidrocarburos Policíclicos Aromáticos , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Contaminantes Ocupacionales del Aire/análisis , Carcinógenos/análisis , Equipo de Protección Personal , Carcinogénesis , Hidrocarburos Policíclicos Aromáticos/análisis
2.
Mol Divers ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280404

RESUMEN

The global prevalence of obesity-related systemic disorders, including non-alcoholic fatty liver disease (NAFLD), and cancers are rapidly rising. Several of these disorders involve peroxisome proliferator-activated receptors (PPARs) as one of the key cell signaling pathways. PPARs are nuclear receptors that play a central role in lipid metabolism and glucose homeostasis. They can activate or suppress the genes responsible for inflammation, adipogenesis, and energy balance, making them promising therapeutic targets for treating metabolic disorders. In this study, an attempt has been made to screen novel PPAR pan-agonists from the ZINC database targeting the three PPAR family of receptors (α, γ, ß/δ), using molecular docking and molecular dynamics (MD) simulations. The top scoring five ligands with strong binding affinity against all the three PPAR isoforms were eprosartan, canagliflozin, pralatrexate, sacubitril, olaparib. The ADMET analysis was performed to assess the pharmacokinetic profile of the top 5 molecules. On the basis of ADMET analysis, the top ligand was subjected to MD simulations, and compared with lanifibranor (reference PPAR pan-agonist). Comparatively, the top-scoring ligand showed better protein-ligand complex (PLC) stability with all the PPARs (α, γ, ß/δ). When experimentally tested in in vitro cell culture model of NAFLD, eprosartan showed dose dependent decrease in lipid accumulation and oxidative damage. These outcomes suggest potential PPAR pan-agonist molecules for further experimental validation and pharmacological development, towards treatment of PPAR-mediated metabolic disorders.

3.
Int J Biometeorol ; 67(1): 121-131, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36323952

RESUMEN

Both the physical properties of the fabric materials used in clothing and the effective design of the clothing, primarily in terms of the air gap thickness, restrict the transmission of the thermal energy from the heat source to the firefighter's body. The air gap distribution over the body in real deployment conditions of firefighters will vary, and is likely to be different from the air gap distribution in standardised manikin tests in standing upright posture. In this study, we investigated differences in the distribution of air layers in firefighters' clothing in three postures reflecting realistic on-duty exposure conditions (crawling, hose-holding, and standing upright used in laboratory tests) using 3D body scanning technology. The body posture induced substantial changes in the air gap thickness on the upper body (chest and back) and lower body. These changes were reflected in both the thermal and evaporative resistance of the ensemble, and consequently, in their potential thermal performance in the field. Therefore, it is recommended to consider body postures during the evaluation of clothing protective performance. Secondly, the knowledge of local clothing properties in real-life exposure provides a true protection mapping and gives design inputs to improve the local protective properties of firefighters' clothing.


Asunto(s)
Bomberos , Humanos , Regulación de la Temperatura Corporal , Postura , Maniquíes , Vestuario , Ropa de Protección
4.
J Plant Biochem Biotechnol ; : 1-8, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37359892

RESUMEN

Climate change has posed a challenge for food security all over the world in the form of fluctuating crop yields and novel disease outbreaks in plants. Human society's overdependence on a few food crops does not seem a wise precedence. There are numerous underutilized/orphan/neglected legumes growing in the Indian desert regions that can come to the rescue and act as balanced and sustainable sources of nutrients and health-benefitting nutraceuticals. However, challenges such as low plant yield, unidentified metabolic pathways and off-flavor in the food products derived from them prevent the realization of their full potential. Conventional breeding techniques are too slow to achieve the desired modifications and cater to the sharply rising demand for functional foods. The novel gene editing tools like CRISPR-Cas provide more precise tool to manipulate the target genes with or without introduction of foreign DNA and therefore, have better chances to be accepted by governments and societies. The current article reports some of the relevant 'gene editing' success stories with respect to nutraceutical and flavor profiles in the popular legumes. It highlights gaps and future potential, along with areas requiring caution, in underutilized edible legumes of the Indian (semi) arid regions like Prosopis cineraria, Acacia senegal and Cyamopsis tetragonoloba.

5.
Ecotoxicol Environ Saf ; 207: 111549, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254407

RESUMEN

Meiobenthos has been considered as an excellent tool for biomonitoring assessment. Elevated temperature and oil pollution are considered as the most pervasive aspects of global environmental changes and matter of concern for contemporary society. Presently, very limited information is available about the synergistic effect of these stressors on meiobenthic community structure and tolerance potential from tropical intertidal environment. Here, we assessed their impacts on meiobenthic community by conducting a 60 days long benthocosm experiment selecting three sets of temperature (25°, 30° and 35 °C) and two sets of diesel oil (low and high) combinations. Gradual changes in their community composition were revealed discernibly with exposures to both the disturbances after 30 and 60 days of experimental period. Diversity profiles for the nematodes were less affected, but copepods showed a graded response of decreasing density with increasing dose of both the stressors. Other meiobenthic taxa such as halacarid mite, turbellaria and polycheate juveniles were adversely affected and eliminated from the treatments, howbeit abundance of ostracods, foraminiferans and bivalve settlers varied significantly. A 3-factor PERMANOVA indicated a significant effect of temperature, diesel, between their interaction and interaction among stressors and time on meiofaunal abundances. In case of free-living nematodes, temperature rise and diesel contamination synchronously led to an elimination of k-selected species like Halalaimus gracilis, H. longicaudatus, Oxystomina aesetosa and Pomponema sp. with a significant decrease in abundance of H. capitulatus and Oncholaimus sp. The r-selected species Daptonema invagiferoum, Sabatieria praedatrix, Theristus acer, Monhystera sp. and Thalassomonhystera sp. had endured even at high doses of diesel treatment in three different temperatures set up. The effects were evident in term of changes in life strategies with an increment of opportunistic species and increased trophic diversity of deposit feeders in treated sediments. Overall, elevated temperature together with diesel oil contamination were found to alter species dynamics within shallow intertidal meiobenthic communities, which might have significant Armageddon on benthic ecosystem functioning.


Asunto(s)
Ecosistema , Invertebrados/fisiología , Contaminación por Petróleo , Temperatura , Animales , Copépodos , Gasolina , Sedimentos Geológicos/química , Nematodos/efectos de los fármacos , Características de la Residencia
6.
J Therm Biol ; 97: 102829, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33863424

RESUMEN

Global climate change induced warming has profound repercussion on physiological performances of marine animals. The Indian Sundarban is one of the best nursery grounds for various shrimp populations which need estuarine realm to complete their bipartite life cycle. From last couple of decades, a clear indication of temperature escalation has been identified in Sundarban. In the present study, we have assessed the physiological energetics of Penaeus monodon post larvae from Indian Sundarban under different temperatures, 28 °C (annual average habitat temperature) and elevated temperatures 30 °C, 32 °C, 34 °C in a month long mesocosm experiment. Significant alterations were observed in growth performances as well as physiological energetics. The length, weight, survival percentages, ingestion rates were reduced, howbeit respiration and ammonia excretion rate had been increased in elevated temperature treatments culminating in a negative Scope for Growth. PERMANOVA results showed a significant (p ≤ 0.05) variation in different physiological performances of shrimp post larvae both in different temperature treatments and days of exposure. The present results clearly highlighted the detrimental effect of elevated temperature on physiological energetics of shrimp larvae that might potentially reduce shrimp population and affect the coastal fishery.


Asunto(s)
Cambio Climático , Respuesta al Choque Térmico , Penaeidae , Temperatura , Amoníaco/metabolismo , Animales , Ingestión de Alimentos , Metabolismo Energético , India , Absorción Intestinal , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/fisiología , Oxígeno/metabolismo , Penaeidae/crecimiento & desarrollo , Penaeidae/metabolismo , Penaeidae/fisiología
7.
J Therm Biol ; 88: 102494, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32125982

RESUMEN

Temperature is one of the key environmental factors affecting the eco-physiological responses of living organisms and is considered one of the utmost crucial factors in shaping the fundamental niche of a species. The purpose of the present study is to delineate the physiological response and changes in energy allocation strategy of Bellamya bengalensis, a freshwater gastropod in the anticipated summer elevated temperature in the future by measuring the growth, body conditions (change in total weight, change in organ to flesh weight ratio), physiological energetics (ingestion rate, absorption rate, respiration rate, excretion rate and Scope for Growth) and thermal performance, Arrhenius breakpoint temperature (ABT), thermal critical maxima (CTmax), warming tolerance (WT) as well as thermal safety margin (TSM) through a mesocosm experiment. We exposed the animals to three different temperatures, 25 °C (average habitat temperature for this animal) and elevated temperatures 30 °C, 35 °C for 30 days and changes in energy budget were measured twice (on 15th and 30th day). Significant changes were observed in body conditions as well as physiological energetics. The total body weight as well as the organ/flesh weight ratio, ingestion followed by absorption rate decreased whereas, respiration and excretion rate increased with elevated temperature treatments resulting in a negative Scope for Growth in adverse conditions. Though no profound impact was found on ABT/CTmax, the peak of thermal curve was considerably declined for animals that were reared in higher temperature treatments. Our data reflects that thermal stress greatly impact the physiological functioning and growth patterns of B. bengalensis which might jeopardize the freshwater ecosystem functioning in future climate change scenario.


Asunto(s)
Gastrópodos/fisiología , Temperatura , Animales , Ingestión de Alimentos , Metabolismo Energético , Frecuencia Respiratoria , Estrés Fisiológico/fisiología
8.
Environ Monit Assess ; 190(10): 603, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30242488

RESUMEN

The present study was conducted during July 2013 (early phase of monsoon or EM) and September 2013 (later phase of monsoon or LM) to ascertain the intra-monsoonal variation on zooplankton, by selecting 15 study stations in the river Saptamukhi, one of the main estuaries in the Sundarbans Estuarine System (SES). In 2013, SES experienced an unusually high monsoonal rainfall also exacerbated by cloud burst event at Himalayan region (upper stretches of SES) which tremendously increased the river runoff. The present work was aimed to decipher the effect of this unusual precipitation during the monsoon season on zooplankton assemblages along with different hydrological parameters. The abundance of zooplankton was recorded as lower during EM compared to LM. Altogether, 56 zooplankton taxa were identified with copepods forming the predominant population. Thirty-three copepod species were reported with 25 calanoid species forming the bulk of the biomass followed by 5 and 3 species of cyclopoids and harpacticoid, respectively. A combination of multivariate cluster analysis, biotic indices, and canonical correspondence analysis revealed noticeable alterations in the zooplankton community structure across the spatio-temporal scale. Furthermore, significant intra-monsoonal changes in zooplankton population correlated with several hydrological parameters were clearly noticed. Paracalanus parvus, Bestiolina similis and Oithona similis were observed to be the most dominant copepod species in both sampling periods. The result of the present study provides new insight on estuarine zooplankton community after unusual rainfall during monsoon season, and provides further evidence to support the conservation and management of the SES ecosystem.


Asunto(s)
Copépodos/clasificación , Monitoreo del Ambiente/métodos , Estuarios , Zooplancton , Animales , Biomasa , Ecosistema , India , Lluvia , Estaciones del Año , Zooplancton/clasificación , Zooplancton/crecimiento & desarrollo , Zooplancton/aislamiento & purificación
9.
Ann Occup Hyg ; 58(8): 1065-77, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25135076

RESUMEN

Fabric-based protective clothing is widely used for occupational safety of firefighters/industrial workers. The aim of this paper is to study thermal protective performance provided by fabric systems and to propose an effective model for predicting the thermal protective performance under various thermal exposures. Different fabric systems that are commonly used to manufacture thermal protective clothing were selected. Laboratory simulations of the various thermal exposures were created to evaluate the protective performance of the selected fabric systems in terms of time required to generate second-degree burns. Through the characterization of selected fabric systems in a particular thermal exposure, various factors affecting the performances were statistically analyzed. The key factors for a particular thermal exposure were recognized based on the t-test analysis. Using these key factors, the performance predictive multiple linear regression and artificial neural network (ANN) models were developed and compared. The identified best-fit ANN models provide a basic tool to study thermal protective performance of a fabric.


Asunto(s)
Ensayo de Materiales/métodos , Exposición Profesional/prevención & control , Ropa de Protección , Textiles/análisis , Quemaduras/prevención & control , Calor/efectos adversos , Humanos , Laboratorios , Modelos Lineales , Redes Neurales de la Computación , Exposición Profesional/análisis
10.
Small Methods ; : e2301132, 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38221715

RESUMEN

Electrocatalysis performs a vital role in numerous energy transformation and repository mechanics, including power cells, Electric field-assisted catalysis, and batteries. It is crucial to investigate new methods to improve electrocatalytic performance if effective and long-lasting power systems are developed. The modulation of catalytic activity and selectivity by external magnetic fields over electrochemical processes has received a lot of interest lately. How the use of various magnetic fields in electrocatalysis has great promise for building effective and selective catalysts, opening the door for the advancement of sophisticated energy conversion is discussed. Furthermore, the challenges and possibilities of incorporating magnetic fields into electrocatalytic systems and suggestions for future research areas are discussed.

11.
J Food Drug Anal ; 32(2): 168-183, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38934695

RESUMEN

Nutraceuticals, that include food ingredients and bioactives from natural products, confer physiological health benefits and protection against chronic diseases. Annatto is a tropical shrub grown in Central and South America and parts of India. Its seeds are rich in the edible carotenoid-derived apocarotenoid pigment, bixin, which is used as a natural colorant in food, textiles, and cosmetics, and is now gaining attention for its potential health-promoting attributes. Here, we compared a green solvent (ethyl lactate) based extraction of bixin and associated metabolites in annatto seeds (crushed and seed coat) with two other conventional solvents (acetone and acid-base). Bixin was characterized in the extracts using UV-visible- and FTIR-spectroscopy and thin-layer chromatography. The bixin-containing solvent extracts were then profiled for other co-existing metabolites using GC-MS analysis, which were found to be sesquiterpenes, terpenes, terpenoids, phytosterols, and tocotrienols. Their bioactivity was evaluated based on antioxidant and wound-healing efficacies and compared with pure bixin, using NIH-3T3 fibroblast cells in-vitro. Pure bixin, as well as the annatto solvent extracts, showed strong antioxidant and wound healing properties, wherein pure bixin and green solvent extract (ethyl lactate coat) exhibited higher levels of antioxidant activity, achieving 46.00% and 44.60% reduction in MDA levels, respectively, as well as enhanced wound-healing activity, with 54.09% and 53.60% wound closure within 24 h. The green solvent extracts of annatto seeds revealed: (a) differential bioactive profiles in annatto seeds (crushed and seed coat) in comparison with other solvents, and (b) strong antioxidant and wound healing properties. Thus, ethyl lactate extraction shows strong potential for sustainable environmental friendly production of functional foods/nutraceuticals from annatto seeds.


Asunto(s)
Bixaceae , Carotenoides , Extractos Vegetales , Semillas , Bixaceae/química , Semillas/química , Carotenoides/química , Carotenoides/farmacología , Carotenoides/análisis , Carotenoides/aislamiento & purificación , Ratones , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Solventes/química , Células 3T3 NIH , Tecnología Química Verde
12.
Carbohydr Polym ; 339: 122237, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823907

RESUMEN

This review discusses the development and application of nanocellulose (NC)-aerogels, a sustainable and biodegradable biomaterial, with enhanced flame retardant (FR) properties. NC-aerogels combine the excellent physical and mechanical properties of NC with the low density and thermal conductivity of aerogels, making them promising for thermal insulation and other fields. However, the flammability of NC-aerogels limits their use in some applications, such as electromagnetic interference shielding, oil/water separation, and flame-resistant textiles. The review covers the design, fabrication, modification, and working mechanism of NC porous materials, focusing on how advanced technologies can impart FR properties into them. The review also evaluates the FR performance of NC-aerogels by employing widely recognized tests, such as the limited oxygen index, cone calorimeter, and UL-94. The review also explores the integration of innovative and eco-friendly materials, such as MXene, metal-organic frameworks, dopamine, lignin, and alginate, into NC-aerogels, to improve their FR performance and functionality. The review concludes by outlining the potential, challenges, and limitations of future research on FR NC-aerogels, identifying the obstacles and potential solutions, and understanding the current progress and gaps in the field.

13.
J Tradit Complement Med ; 14(1): 55-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223813

RESUMEN

Background and aim: Novel nature of the viral pathogen SARS-CoV-2 and the absence of standard drugs for treatment, have been a major challenge to combat this deadly infection. Natural products offer safe and effective remedy, for which traditional ethnic medicine can provide leads. An indigenous poly-herbal formulation, Kabasura Kudineer from Siddha system of medicine was evaluated here using a combination of computational approaches, to identify potential inhibitors against two anti-SARS-CoV-2 targets - post-fusion Spike protein (structural protein) and main protease (Mpro, non-structural protein). Experimental procedure: We docked 32 phytochemicals from the poly-herbal formulation against viral post-fusion Spike glycoprotein and Mpro followed by molecular dynamics using Schrodinger software. Drug-likeness analysis was performed using machine learning (ML) approach and pkCSM. Results: The binding affinity of the phytochemicals in Kabasura Kudineer revealed the following top-five bioactives: Quercetin > Luteolin > Chrysoeriol > 5-Hydroxy-7,8-Dimethoxyflavone > Scutellarein against Mpro target, and Gallic acid > Piperlonguminine > Chrysoeriol > Elemol > Piperine against post-fusion Spike protein target. Quercetin and Gallic acid exhibited binding stability in complexation with their respective viral-targets and favourable free energy change as revealed by the molecular dynamics simulations and MM-PBSA analysis. In silico predicted pharmacokinetic profiling of these ligands revealed appropriate drug-likeness properties. Conclusion: These outcomes provide: (a) potential mechanism for the anti-viral efficacy of the indigenous Siddha formulation, targeting Mpro and post-fusion Spike protein (b) top bioactive lead-molecules that may be developed as natural product-based anti-viral pharmacotherapy and their pleiotropic protective effects may be leveraged to manage co-morbidities associated with COVID-19.

14.
Environ Monit Assess ; 185(1): 653-72, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22396068

RESUMEN

Soft-bottom macrobenthic diversity and community structure were assessed at Mumbai and Jawaharlal Nehru ports during three different periods between 2001 and 2002 (November 2001 post-monsoon 1, April/May 2002 pre-monsoon, and October 2002 post-monsoon 2). A total of 43 macrobenthic invertebrate species belonging to five phyla were recorded. Macrofaunal abundance (PM1 186, PreM 106, and PM2 31 ind m(-2)) and species diversity index (PM1 0.87, PreM 0.73, and PM2 0.30) were very low in all the seasons. Polychaetes were the most dominant macrobenthic group (72.09%) followed by decapoda, amphipoda, and bivalves (4.56%). Canonical correspondence analysis showed that sediment texture, temperature, and suspended particulate matter were the most important environmental variables influencing polychaete species composition. Significant seasonal variations were observed, influenced by dissimilar monsoonal patterns. Macrobenthic population density during November 2001 was higher than that of October 2002 post-monsoon season. Pre-monsoon season recorded more carnivorous polychaete species than post-monsoon seasons. The present study showed lower values of polychaete diversity index in all the seasons compared to earlier studies. Out of 31 polychaete species, 19 have been reported for the first time from this area. Polychaete species and Glycera longipinnis, Paraprionospio pinnata, and Cossura coasta recorded from 1985 to 1986 were also observed in the present study. Species like Sigambra constricta, Perinereis cavifrons, Prionospio polybranchiata, and Parheteromastus tenuis were not recorded in the present study, although they were observed during earlier studies in this area.


Asunto(s)
Organismos Acuáticos/crecimiento & desarrollo , Biodiversidad , Invertebrados/crecimiento & desarrollo , Animales , Organismos Acuáticos/clasificación , Monitoreo del Ambiente , India , Especies Introducidas , Invertebrados/clasificación , Navíos
15.
Mar Environ Res ; 184: 105850, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36566576

RESUMEN

Extreme climatic events such as heatwaves are anticipated to intensify in future and impose additional thermal stress to aquatic animals. Knowledge regarding an organism's thermal tolerance or sensitivity is therefore important in determining the effects of fluctuating water temperature on physiological responses. Thus, thermal tolerance tests can serve as a first step in understanding the present and future effects of climate warming. Climatic variability will alter prey-predator attributes differentially and impact their subsequent interactions. The key objective of this study was to compare and decode the stress responses, resistance and vulnerability of two economically important species from Sundarbans estuarine system- Penaeus monodon (prey) and Mystus gulio (predator) subjected to acute thermal challenges such as sudden heatwaves. Both the species were subjected to an increasing thermal ramp of 1°C h-1 from 22°C to 42°C. Organisms were observed continuously throughout the ramping period and changes in the locomotory behaviour were followed until their loss of equilibrium. The digestive tissue samples were dissected out from both M. gulio and P. monodon at every 2°C and also after a recovery period of 48 h. The SOD, CAT, GST, LPO were measured and integrated biomarker response (IBR) was analysed. The results from thermal tolerance maxima estimation, biomarker study, IBR responses indicated more intense stress response in fish M. gulio whereas recovery potential was greater in shrimp P. monodon. Our findings corroborate the 'trophic sensitivity hypothesis' which advocates predators to be less tolerant in aggravated environmental stress than their prey.


Asunto(s)
Penaeidae , Animales , Penaeidae/metabolismo , Estrés Oxidativo , Peces/metabolismo , Biomarcadores/metabolismo , Estrés Fisiológico , Conducta Predatoria
16.
Environ Sci Pollut Res Int ; 30(9): 23213-23224, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36318414

RESUMEN

Global climate change-induced ocean warming and acidification have complex reverberations on the physiological functioning of marine ectotherms. The Sundarbans estuarine system has been under threat for the past few decades due to natural and anthropogenic disturbances. In recent years, petroleum products' transportation and their usage have increased manifold, which causes accidental oil spills. The mud crab (Scylla serrata) is one of the most commercially exploited species in the Sundarbans. The key objective of this study was to delineate whether rearing under global environmental drivers (ocean acidification and warming) exacerbates the effect of a local driver (oil pollution) on the physiological energetics of mud crab (Scylla serrata) from the Sundarbans estuarine system. Animals were reared separately for 30 days under (a) the current climatic scenario (pH 8.1, 28°C) and (b) the predicted climate change scenario (pH 7.7, 34°C). After rearing for 30 days, 50% of the animals from each treatment were exposed to 5 mg L-1 of marine diesel oil for the next 24 h. Physiological energetics (ingestion rate, absorption rate, respiration rate, excretion rate, and scope for growth), thermal performance, thermal critical maxima (CTmax), acclimation response ratio (ARR), Arrhenius activation energy (AAE), temperature coefficient (Q10), warming tolerance (WT), and thermal safety margin (TSM) were evaluated. Ingestion and absorption rates were significantly reduced, whereas respiration and ammonia excretion rates significantly increased in stressful treatments, resulting in a significantly lower scope for growth. A profound impact on thermal performance was also noticed, leading to a downward shift in CTmax value for stress-acclimated treatment. The present results clearly highlighted the detrimental combined effect of global climatic stressors and pollution on the physiological energetics of crabs that might potentially reduce their population and affect coastal aquaculture in forthcoming years.


Asunto(s)
Braquiuros , Contaminación por Petróleo , Animales , Agua de Mar , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Calentamiento Global , Temperatura , Cambio Climático , Océanos y Mares
17.
Artículo en Inglés | MEDLINE | ID: mdl-36921914

RESUMEN

Anthropogenic activities primarily combustion of fossil fuel is the prime cause behind the increased concentration of CO2 into the atmosphere. As a consequence, marine environments are anticipated to experience shift towards lower pH and elevated temperatures. Moreover, since the industrial revolution the growing demand for petroleum-based products has been mounting up worldwide leading to severe oil pollution. Sundarbans estuarine system (SES) is experiencing ocean warming, acidification as well as oil pollution from the last couple of decades. Scylla serrata is one of the most commercially significant species for aquaculture in coastal areas of Sundarbans. Thus, the prime objective of this study is to delineate whether exposure under ocean warming and acidification exacerbates effect of oil spill on oxidative stress of an estuarine crab S. serrata. Animals were separately exposed under current and projected climate change scenario for 30 days. After this half animals of each treatment were exposed to oil spill conditions for 24 h. Oxidative stress status superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), lipid peroxidation (LPO level) and DNA damage (Comet assay) were measured. Augmented antioxidant and detoxification enzyme activity was noted except for SOD but failed to counteract LPO and DNA damage. The present results clearly highlighted the detrimental combined effect of OWA and pollution on oxidative stress status of crabs that might potentially reduce its population and affect the coastal aquaculture in impending years.


Asunto(s)
Braquiuros , Contaminación por Petróleo , Contaminantes Químicos del Agua , Animales , Braquiuros/metabolismo , Contaminación por Petróleo/efectos adversos , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Agua de Mar , Antioxidantes/metabolismo , Estrés Oxidativo , Catalasa , Biomarcadores/metabolismo , Superóxido Dismutasa/farmacología , Peroxidación de Lípido , Contaminantes Químicos del Agua/toxicidad
18.
Hum Nutr Metab ; 31: 200179, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38620788

RESUMEN

The vulnerability of human health is amplified in recent times with global increase in non-communicable diseases (due to lifestyle changes and environmental insults) and infectious diseases (caused by newer pathogens and drug-resistance strains). Clinical management of diseases is further complicated by disease severity caused by other comorbid factors. Drug-based therapy may not be the sole approach, particularly in scenarios like the COVID-19 pandemic, where there is no specific drug against SARS-CoV-2. Nutritional interventions are significant in armouring human populations in disease prevention, and as adjunctive therapy for disease alleviation. Amidst ongoing clinical trials to determine the efficacy of Vit. D against infections and associated complications, this review examines the pleiotropic benefits of nutritional adequacy of vitamin D (Vit. D) in combating viral infections (COVID-19), its severity and complications due to co-morbidities (obesity, diabetes, stroke and Kawasaki disease), based on research findings and clinical studies. Supplements of Vit. D in combination with other nutrients, and drugs, are suggested as promising preventive-health and adjunct-treatment strategies in the clinical management of viral infections with metabolic comorbidities.

19.
Artículo en Inglés | MEDLINE | ID: mdl-37587397

RESUMEN

As the spectre of climate change gains in strength with each passing moment, many of our mundane food crops like rice face the heat, leading to uncertain yields and unforeseen disease outbreaks. Subsequently, mankind is forced to look for alternative food choices that should primarily come from indigenous plants that are less demanding in terms of usage of water and application of chemical-based fertilizers/pesticides. There are plants growing in the wild in the arid and semi-arid zones of Rajasthan, India, that can come to the rescue, with an added potential for development into valuable functional foods-i.e., not only as source of carbohydrates, proteins, and micro-nutrients but also that of health benefiting nutraceuticals (like antioxidant flavonoids) and relevant enzymes. The other parts (non-edible) of these plants have often also been traditionally validated via diverse ethnomedicinal practices; these could also be useful bioenergy sources. Keeping in mind the broader aim of looking at future functional foods that are also required to be environmentally sustainable, the current report: (a) reviews the extant literature on underutilized legumes from arid/semi-arid zones, (b) discusses current status with respect to biological activities present therein, and (c) suggests pertinent research questions and solution paths in the domains of bioactives, bioenergy, and sustainable environment.

20.
Front Plant Sci ; 14: 1131173, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968395

RESUMEN

Introduction: Phenolic phytochemicals are known for antioxidant-mediated pharmacological effects in various diseases (diabetes, cancer, CVDs, obesity, inflammatory and neurodegenerative disorders). However, individual compounds may not exert the same biological potency as in combination with other phytochemicals. Cyamopsis tetragonoloba (Guar), an underutilized semi-arid legume which has been used as a traditional food in Rajasthan (India), is also a source of the important industrial product guar gum. However, studies on its biological activity, like antioxidant, are limited. Methods: We tested the effect of C. tetragonoloba seed extract to enhance the antioxidant activity of well-known dietary flavonoids (quercetin, kaempferol, luteolin, myricetin, and catechin) and non-flavonoid phenolics (caffeic acid, ellagic acid, taxifolin, epigallocatechin gallate (EGCG), and chlorogenic acid) using DPPH radical scavenging assay. The most synergistic combination was further validated for its cytoprotective and anti-lipid peroxidative effects in in vitro cell culture system, at different concentrations of the extract. LC-MS analysis of purified guar extract was also performed. Results and discussion: In most cases, we observed synergy at lower concentrations of the seed extract (0.5-1 mg/ml). The extract concentration of 0.5 mg/ml enhanced the antioxidant activity of Epigallocatechin gallate (20 µg/ml) by 2.07-folds, implicating its potential to act as an antioxidant activity enhancer. This synergistic seed extract-EGCG combination diminished the oxidative stress nearly by double-fold when compared with individual phytochemical treatments in in vitro cell culture. LC-MS analysis of the purified guar extract revealed some previously unreported metabolites, including catechin hydrate, myricetin-3-galactoside, gossypetin-8-glucoside, and puerarin (daidzein-8-C-glucoside) which possibly explains its antioxidant enhancer effect. The outcomes of this study could be used for development of effective nutraceutical/dietary supplements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA