Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Dev Res ; 85(1): e22158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38349262

RESUMEN

Glioblastoma multiforme (GBM) is one of the most aggressive malignancies with a high recurrence rate and poor prognosis. Theranostic, combining therapeutic and diagnostic approaches, arises as a successful strategy to improve patient outcomes through personalized medicine. Src is a non-receptor tyrosine kinase (nRTK) whose involvement in GBM has been extensively demonstrated. Our previous research highlighted the effectiveness of the pyrazolo[3,4-d]pyrimidine SI306 and its more soluble prodrug CMP1 as Src inhibitors both in in vitro and in vivo GBM models. In this scenario, we decided to develop a theranostic prodrug of SI306, ProSI-DOTA(68 Ga) 1, which was designed to target GBM cells after hydrolysis and follow-up on the disease's progression and improve the therapy's outcome. First, the corresponding nonradioactive prodrug 2 was tested to evaluate its ADME profile and biological activity. It showed good metabolic stability, no inhibition of CYP3A4, suboptimal aqueous solubility, and slight gastrointestinal and blood-brain barrier passive permeability. Compound 2 exhibited a drastic reduction of cell vitality after 72 h on two different GBM cell lines (GL261 and U87MG). Then, 2 was subjected to complexation with the radionuclide Gallium-68 to give ProSI-DOTA(68 Ga) 1. The cellular uptake of 1 was evaluated on GBM cells, highlighting a slight but significant time-dependent uptake. The data obtained from our preliminary studies reflect the physiochemical properties of 1. The use of an alternative route of administration, such as the intranasal route, could overcome the physiochemical limitations and enhance the pharmacokinetic properties of 1, paving the way for its future development.


Asunto(s)
Glioblastoma , Profármacos , Humanos , Medicina de Precisión , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Barrera Hematoencefálica , Línea Celular , Profármacos/farmacología
2.
Pharmacol Res ; 195: 106858, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473878

RESUMEN

Aberrant activation of Hedgehog (HH) signaling in cancer is the result of genetic alterations of upstream pathway components (canonical) or other oncogenic mechanisms (noncanonical), that ultimately concur to activate the zinc-finger transcription factors GLI1 and GLI2. Therefore, inhibition of GLI activity is a good therapeutic option to suppress both canonical and noncanonical activation of the HH pathway. However, only a few GLI inhibitors are available, and none of them have the profile required for clinical development due to poor metabolic stability and aqueous solubility, and high hydrophobicity. Two promising quinoline inhibitors of GLI were selected by virtual screening and subjected to hit-to-lead optimization, thus leading to the identification of the 4-methoxy-8-hydroxyquinoline derivative JC19. This molecule impaired GLI1 and GLI2 activities in several cellular models interfering with the binding of GLI1 and GLI2 to DNA. JC19 suppressed cancer cell proliferation by enhancing apoptosis, inducing a strong anti-tumor response in several cancer cell lines in vitro. Specificity towards GLI1 and GLI2 was demonstrated by lower activity of JC19 in GLI1- or GLI2-depleted cancer cells. JC19 showed excellent metabolic stability and high passive permeability. Notably, JC19 inhibited GLI1-dependent melanoma xenograft growth in vivo, with no evidence of toxic effects in mice. These results highlight the potential of JC19 as a novel anti-cancer agent targeting GLI1 and GLI2.


Asunto(s)
Neoplasias , Proteína con Dedos de Zinc GLI1 , Proteína Gli2 con Dedos de Zinc , Animales , Humanos , Ratones , Proteínas Hedgehog/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteína con Dedos de Zinc GLI1/antagonistas & inhibidores , Proteína Gli2 con Dedos de Zinc/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/patología
3.
J Nat Prod ; 86(7): 1698-1707, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37402317

RESUMEN

In the present study, the antiviral activity of cannabinoids isolated from Cannabis sativa L. was assessed in vitro against a panel of SARS-CoV-2 variants, indicating cannabidiolic acid (CBDA) was the most active. To overcome the instability issue of CBDA, its methyl ester was synthesized and tested for the first time for its antiviral activity. CBDA methyl ester showed a neutralizing effect on all the SARS-CoV-2 variants tested with greater activity than the parent compound. Its stability in vitro was confirmed by ultra-high-performance liquid chromatography (UHPLC) analysis coupled with high-resolution mass spectrometry (HRMS). In addition, the capacity of both CBDA and its derivative to interact with the virus spike protein was assessed in silico. These results showed that CBDA methyl ester can be considered as a lead compound to be further developed as a new effective drug against COVID-19 infection.


Asunto(s)
COVID-19 , Cannabinoides , Cannabis , Cannabinoides/química , Cannabis/química , COVID-19/prevención & control , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19
4.
J Enzyme Inhib Med Chem ; 38(1): 2183810, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36916299

RESUMEN

Helicobacter pylori (HP) is among the most common pathogens causing infection in humans worldwide. Oxidative stress and gastric inflammation are involved in the progression of HP-related gastric diseases, and they can be targeted by integrating conventional antibiotic treatment with polyphenol-enriched natural products. In this work, we characterised three different propolis extracts and evaluated their stability under in vitro simulated gastric digestion, compared to their main constituents alone. The extract with the highest stability to digestion (namely, the dark propolis extract, DPE) showed a minimum bactericidal concentration (MBC) lower than 1 mg/mL on HP strains with different virulence factors. Finally, since urease is one of the virulence factors contributing to the establishment of a microenvironment that promotes HP infection, we evaluated the possible inhibition of this enzyme by using molecular docking simulations and in vitro colorimetric assay, showing that galangin and pinocembrin may be involved in this activity.


Asunto(s)
Helicobacter pylori , Própolis , Humanos , Própolis/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Factores de Virulencia/farmacología , Extractos Vegetales/farmacología , Digestión
5.
Phytother Res ; 37(5): 1924-1937, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36583304

RESUMEN

Neuropathic pain (NP) is a chronic disease that affects the normal quality of life of patients. To date, the therapies available are only symptomatic and they are unable to reduce the progression of the disease. Many studies reported the efficacy of Cannabis sativa L. (C. sativa) on NP, but no Δ9 -tetrahydrocannabinol (Δ9 -THC)-free extracts have been investigated in detail for this activity so far. The principal aim of this work is to investigate the potential pain-relieving effect of innovative cannabidiol-rich non-psychotropic C. sativa oils, with a high content of terpenes (K2), compared to the same extract devoid of terpenes (K1). Oral administration of K2 (25 mg kg-1 ) induced a rapid and long-lasting relief of pain hypersensitivity in a mice model of peripheral neuropathy. In spinal cord samples, K2 reduced mitogen-activated protein kinase (MAPKs) levels and neuroinflammatory factors. These effects were reverted by the administration of a CB2 antagonist (AM630), but not by a CB1 antagonist (AM251). Conversely, K1 showed a lower efficacy in the absence of CB1/CB2-mediated mechanisms. In LPS-stimulated murine microglial cells (BV2), K2 reduced microglia pro-inflammatory phenotype through the downregulation of histone deacetylase 1 (HDAC-1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IKBα) and increased interleukin-10 (IL-10) expression, an important antiinflammatory cytokine. In conclusion, these results suggested that K2 oral administration attenuated NP symptoms by reducing spinal neuroinflammation and underline the important role of the synergism between cannabinoids and terpenes.


Asunto(s)
Cannabidiol , Cannabis , Neuralgia , Receptor Cannabinoide CB2 , Animales , Ratones , Cannabidiol/farmacología , Cannabis/química , Microglía , Neuralgia/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Aceites , Calidad de Vida , Receptor Cannabinoide CB2/efectos de los fármacos , Receptor Cannabinoide CB2/metabolismo
6.
Phytother Res ; 37(10): 4304-4320, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37433745

RESUMEN

The prevalence of obesity is steadily rising, making safe and more efficient anti-obesity treatments an urgent medical need. Growing evidence correlates obesity and comorbidities, including anxiety and depression, with the development of a low-grade inflammation in peripheral and central tissues. We hypothesized that attenuating neuroinflammation might reduce weight gain and improve mood. We investigated the efficacy of a methanolic extract from Helichrysum stoechas (L.) Moench (HSE), well-known for its anti-inflammatory properties, and its main constituent arzanol (AZL). HPLC-ESI-MS2 and HPLC-UV were used to characterize the extract. HSE effects on mood and feeding behavior was assessed in mice. The mechanism of action of HSE and AZL was investigated in hippocampus samples and SH-SY5Y cells by western blotting and immunofluorescence. Oral administration of HSE for 3 weeks limited weight gain with no significant decrease in food intake. HSE produced an anxiolytic-like and antidepressant-like phenotype comparable to diazepam and amitriptyline, respectively, in the absence of locomotor and cognitive impairments and induced neuroprotective effects in glutamate-exposed SH-SY5Y cells. A dose-dependent reduction of SIRT1 expression was detected in SH-SY5Y cells and in hippocampal samples from HSE-treated mice. The inhibition of the SIRT1-FoxO1 pathway was induced in the hypothalamus. Molecular docking studies proposed a mechanism of SIRT1 inhibition by AZL, confirmed by the evaluation of inhibitory effects on SIRT1 enzymatic activity. HSE limited weight gain and comorbidities through an AZL-mediated SIRT1 inhibition. These activities indicate HSE an innovative therapeutic perspective for obesity and associated mood disorders.

7.
J Enzyme Inhib Med Chem ; 37(1): 2382-2394, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36050846

RESUMEN

Inhibition of c-Src is considered one of the most studied approaches to cancer treatment, with several heterocyclic compounds approved during the last 15 years as chemotherapeutic agents. Starting from the biological evaluation of an in-house collection of small molecules, indolinone was selected as the most promising scaffold. In this work, several functionalised indolinones were synthesised and their inhibitory potency and cytotoxic activity were assayed. The pharmacological profile of the most active compounds, supported by molecular modelling studies, revealed that the presence of an amino group increased the affinity towards the ATP-binding site of c-Src. At the same time, bulkier derivatizations seemed to improve the interactions within the enzymatic pocket. Overall, these data represent an early stage towards the optimisation of new, easy-to-be functionalised indolinones as potential c-Src inhibitors.


Asunto(s)
Antineoplásicos , Inhibidores de Proteínas Quinasas , Antineoplásicos/química , Simulación del Acoplamiento Molecular , Oxindoles , Proteínas Tirosina Quinasas , Relación Estructura-Actividad
8.
Phytother Res ; 36(5): 2246-2263, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35393641

RESUMEN

Cannabis sativa L. is increasingly emerging for its protective role in modulating neuroinflammation, a complex process orchestrated among others by microglia, the resident immune cells of the central nervous system. Phytocannabinoids, especially cannabidiol (CBD), terpenes, and other constituents trigger several upstream and downstream microglial intracellular pathways. Here, we investigated the molecular mechanisms of a CBD- and terpenes-enriched C. sativa extract (CSE) in an in vitro model of neuroinflammation. We evaluated the effect of CSE on the inflammatory response induced by exposure to lipopolysaccharide (LPS) in BV-2 microglial cells, compared with CBD and ß-caryophyllene (CAR), CB2 receptors (CB2r) inverse and full agonist, respectively. The LPS-induced upregulation of the pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α was significantly attenuated by CSE and only partially by CBD, whereas CAR was ineffective. In BV-2 cells, these anti-inflammatory effects exerted by CSE phytocomplex were only partially dependent on CB2r modulation and they were mediated by the regulation of enzymes responsible for the endocannabinoids metabolism, by the inhibition of reactive oxygen species release and the modulation of JNK/p38 cascade with consequent NF-κB p65 nuclear translocation suppression. Our data suggest that C. sativa phytocomplex and its multitarget mechanism could represent a novel therapeutic strategy for neuroinflammatory-related diseases.


Asunto(s)
Cannabidiol , Cannabis , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Citocinas/metabolismo , Endocannabinoides/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Microglía , FN-kappa B/metabolismo , Receptor Cannabinoide CB2/metabolismo
9.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054958

RESUMEN

Avermectins are macrocyclic lactones with anthelmintic activity. Recently, they were found to be effective against Mycobacterium tuberculosis, which accounts for one third of the worldwide deaths from antimicrobial resistance. However, their anti-mycobacterial mode of action remains to be elucidated. The activity of selamectin was determined against a panel of M. tuberculosis mutants. Two strains carrying mutations in DprE1, the decaprenylphosphoryl-ß-D-ribose oxidase involved in the synthesis of mycobacterial arabinogalactan, were more susceptible to selamectin. Biochemical assays against the Mycobacterium smegmatis DprE1 protein confirmed this finding, and docking studies predicted a binding site in a loop that included Leu275. Sequence alignment revealed variants in this position among mycobacterial species, with the size and hydrophobicity of the residue correlating with their MIC values; M. smegmatis DprE1 variants carrying these point mutations validated the docking predictions. However, the correlation was not confirmed when M. smegmatis mutant strains were constructed and MIC phenotypic assays performed. Likewise, metabolic labeling of selamectin-treated M. smegmatis and M. tuberculosis cells with 14C-labeled acetate did not reveal the expected lipid profile associated with DprE1 inhibition. Together, our results confirm the in vitro interactions of selamectin and DprE1 but suggest that selamectin could be a multi-target anti-mycobacterial compound.


Asunto(s)
Oxidorreductasas de Alcohol/antagonistas & inhibidores , Antiparasitarios/farmacología , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Ivermectina/análogos & derivados , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Oxidorreductasas de Alcohol/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Ivermectina/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Relación Estructura-Actividad
10.
Bioorg Med Chem Lett ; 41: 127969, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771587

RESUMEN

The progress made so far in the elucidation of the structure of free fatty acid receptor 1 (FFAR1) and its secondary and ternary complexes with partial and full allosteric ligands led to the discovery of various putative binding regions on the FFAR1 surface. Attempts to develop FFAR1 agonists culminated with the identification of TAK-875 (1), whose phase 3 clinical trials were terminated due to potential liver toxicity. In the search of safer agonists, numerous classes of new compounds were designed, synthesized, and tested. Chemical decoration of the scaffolds was rationalized to reach a good balance between lipophilicity, activity, and toxicity. Today, targeting FFAR1 with positive modulators represents an attractive pharmacological tool for the treatment of type 2 diabetes mellitus (T2DM), mainly because of the lack of hypoglycaemic side effects associated with several antidiabetic drugs currently available. Moreover, considering the involvement of FFAR1 in many physio-pathological processes, its agonists are also emerging as possible therapeutic tools for alleviating organ inflammation and fibrosis, as well as for the treatment of CNS disorders, such as Alzheimer's disease and dementia.


Asunto(s)
Desarrollo de Medicamentos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Sitios de Unión , Humanos , Ligandos , Receptores Acoplados a Proteínas G/metabolismo
11.
Bioorg Chem ; 108: 104657, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33556697

RESUMEN

Wound healing represents an urgent need from the clinical point of view. Several diseases result in wound conditions which are difficult to treat, such as in the case of diabetic foot ulcer. Starting from there, the medicinal research has focused on various targets over the years, including GPCRs as new wound healing drug targets. In line with this, GPR120, known to be an attractive target in type 2 diabetes drug discovery, was studied to finalize the development of new wound healing agents. Pinocembrin (HW0) was evaluated as a suitable compound for interacting with GPR120, and was hybridized with fatty acids, which are known endogenous GPR120 ligands, to enhance the wound healing potential and GPR120 interactions. HW0 and its 7-linolenoyl derivative (HW3) were found to be innovative wound healing agents. Immunofluorescence and functional assays suggested that their activity was mediated by GPR120, and docking simulations showed that the compounds could share the same pocket occupied by the known GPR120 agonist, TUG-891.


Asunto(s)
Ésteres/farmacología , Flavanonas/farmacología , Ácidos Linolénicos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ésteres/síntesis química , Ésteres/química , Flavanonas/síntesis química , Flavanonas/química , Humanos , Ácidos Linolénicos/síntesis química , Ácidos Linolénicos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
12.
J Enzyme Inhib Med Chem ; 36(1): 377-383, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33525941

RESUMEN

A classical drug repurposing approach was applied to find new putative GPR40 allosteric binders. A two-step computational protocol was set up, based on an initial pharmacophoric-based virtual screening of the DrugBank database of known drugs, followed by docking simulations to confirm the interactions between the prioritised compounds and GPR40. The best-ranked entries showed binding poses comparable to that of TAK-875, a known allosteric agonist of GPR40. Three of them (tazarotenic acid, bezafibrate, and efaproxiral) affect insulin secretion in pancreatic INS-1 832/13 ß-cells with EC50 in the nanomolar concentration (5.73, 14.2, and 13.5 nM, respectively). Given the involvement of GPR40 in type 2 diabetes, the new GPR40 modulators represent a promising tool for therapeutic intervention towards this disease. The ability to affect GPR40 was further assessed in human breast cancer MCF-7 cells in which this receptor positively regulates growth activities (EC50 values were 5.6, 21, and 14 nM, respectively).


Asunto(s)
Reposicionamiento de Medicamentos , Ácidos Fíbricos/farmacología , Insulina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Retinoides/farmacología , Regulación Alostérica/efectos de los fármacos , Compuestos de Anilina/farmacología , Animales , Bezafibrato/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Estructura Molecular , Propionatos/farmacología , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad
13.
Int J Mol Sci ; 22(16)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34445239

RESUMEN

Some nontuberculous mycobacteria (NTM) are considered opportunistic pathogens. Nevertheless, NTM infections are increasing worldwide, becoming a major public health threat. Furthermore, there is no current specific drugs to treat these infections, and the recommended regimens generally lack efficacy, emphasizing the need for novel antibacterial compounds. In this paper, we focused on the essential mycolic acids transporter MmpL3, which is a well-characterized target of several antimycobacterial agents, to identify new compounds active against Mycobacterium abscessus (Mab). From the crystal structure of MmpL3 in complex with known inhibitors, through an in silico approach, we developed a pharmacophore that was used as a three-dimensional filter to identify new putative MmpL3 ligands within databases of known drugs. Among the prioritized compounds, mefloquine showed appreciable activity against Mab (MIC = 16 µg/mL). The compound was confirmed to interfere with mycolic acids biosynthesis, and proved to also be active against other NTMs, including drug-resistant clinical isolates. Importantly, mefloquine is a well-known antimalarial agent, opening the possibility of repurposing an already approved drug, which is a useful strategy to reduce the time and cost of disclosing novel drug candidates.


Asunto(s)
Antibacterianos/farmacología , Antimaláricos/farmacología , Mefloquina/farmacología , Mycobacterium abscessus/metabolismo , Ácidos Micólicos/metabolismo
14.
Bioorg Med Chem Lett ; 29(14): 1761-1764, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31104992

RESUMEN

The G-protein-coupled receptor 40 (GPR40) is an attractive molecular target for the treatment of type 2 diabetes mellitus. Previously, based on the natural oleic acid substrate, an exogenous ligand for this receptor, named AV1, was synthesized. In this context, here we validated the activity of AV1 as a full agonist, while the corresponding catechol analogue, named AV2, was investigated for the first time. The ligand-protein interaction between this new molecule and the receptor was highlighted in the lower portion of the GPR40 groove that generally accommodates DC260126. The functional assays performed have demonstrated that AV2 is a suitable GPR40 partial agonist, showing a therapeutic potential and representing a useful tool in the management of type 2 diabetes.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Quercetina/uso terapéutico , Humanos , Quercetina/farmacología
15.
J Cell Physiol ; 233(6): 4961-4971, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29215700

RESUMEN

Osteosarcoma (OS) is an ultra-rare highly malignant tumor of the skeletal system affecting mainly children and young adults and it is characterized by an extremely aggressive clinical course. OS patients are currently treated with chemotherapy and complete surgical resection of cancer tissue. However, resistance to chemotherapy and the recurrence of disease, as pulmonary metastasis, remain the two greatest challenges in the management, and treatment of this tumor. For these reasons, it is of primary interest to find alternative therapeutic strategies for OS. Dysregulated Hedgehog signalling is involved in the development of various types of cancers including OS. It has also been implicated in tumor/stromal interaction and cancer stem cell biology, and therefore presents a novel therapeutic strategy for cancer treatment. In our work, we tested the activity of five potent Smoothened (SMO) inhibitors, four acylguanidine and one acylthiourea derivatives, against an OS cell line. We found that almost all our compounds were able to inhibit OS cells proliferation and to reduce Gli1 protein levels. Our results also indicated that SMO inhibition in OS cells by such compounds, induces apoptosis with a nanomolar potency. These findings suggest that inactivation of SMO may be a useful approach to the treatment of patients with OS.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Óseas/tratamiento farmacológico , Guanidinas/farmacología , Osteosarcoma/tratamiento farmacológico , Receptor Smoothened/antagonistas & inhibidores , Tiourea/farmacología , Acilación , Apoptosis/efectos de los fármacos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/metabolismo , Tiourea/análogos & derivados , Células Tumorales Cultivadas , Proteína con Dedos de Zinc GLI1/metabolismo
16.
J Cell Physiol ; 232(11): 3103-3111, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28019670

RESUMEN

Alkaptonuria (AKU) is an ultra-rare genetic disease, in which the accumulation of a toxic metabolite, homogentisic acid (HGA) leads to the systemic development of ochronotic aggregates. These aggregates cause severe complications mainly at the level of joints with extensive degradation of the articular cartilage. Primary cilia have been demonstrated to play an essential role in development and the maintenance of articular cartilage homeostasis, through their involvement in mechanosignaling and Hedgehog signaling pathways. Hedgehog signaling has been demonstrated to be activated in osteoarthritis (OA) and to drive cartilage degeneration in vivo. The numerous similarities between OA and AKU suggest that primary cilia Hedgehog signaling may also be altered in AKU. Thus, we characterized an AKU cellular model in which healthy chondrocytes were treated with HGA (66 µM) to replicate AKU cartilage pathology. We investigated the degree of activation of the Hedgehog signaling pathway and how treatment with inhibitors of the receptor Smoothened (Smo) influenced Hedgehog activation and primary cilia structure. The results obtained in this work provide a further step in the comprehension of the pathophysiological features of AKU, suggesting a potential therapeutic approach to modulate AKU cartilage degradation processes through manipulation of the Hedgehog pathway.


Asunto(s)
Alcaptonuria/inducido químicamente , Anilidas/farmacología , Condrocitos/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Ácido Homogentísico/toxicidad , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/antagonistas & inhibidores , Alcaloides de Veratrum/farmacología , Alcaptonuria/metabolismo , Alcaptonuria/patología , Células Cultivadas , Condrocitos/metabolismo , Condrocitos/patología , Cilios/efectos de los fármacos , Cilios/metabolismo , Cilios/patología , Relación Dosis-Respuesta a Droga , Humanos , Hiperpigmentación/inducido químicamente , Hiperpigmentación/metabolismo , Receptor Smoothened/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo
17.
J Inherit Metab Dis ; 38(5): 807-14, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25762405

RESUMEN

Alkaptonuria is an ultra-rare autosomal recessive disease developed from the lack of homogentisate 1,2-dioxygenase (HGD) activity, causing an accumulation in connective tissues of homogentisic acid (HGA) and its oxidized derivatives in polymerized form. The deposition of ochronotic pigment has been so far attributed to homogentisic acid produced by the liver, circulating in the blood, and accumulating locally. In the present paper, we report the expression of HGD in the brain. Mouse and human brain tissues were positively tested for HGD gene expression by western blotting. Furthermore, HGD expression was confirmed in human neuronal cells that also revealed the presence of six HGD molecular species. Moreover, once cultured in HGA excess, human neuronal cells produced ochronotic pigment and amyloid. Our findings indicate that alkaptonuric brain cells produce the ochronotic pigment in loco and this may contribute to induction of neurological complications.


Asunto(s)
Alcaptonuria/metabolismo , Encéfalo/metabolismo , Homogentisato 1,2-Dioxigenasa/metabolismo , Alcaptonuria/patología , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Western Blotting , Encéfalo/patología , Línea Celular Tumoral , Ácido Homogentísico/metabolismo , Humanos , Masculino , Ratones , Ocronosis/metabolismo , Ocronosis/patología
19.
RSC Med Chem ; 15(2): 720-732, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38389870

RESUMEN

ATP-binding cassette (ABC) transporters are a large family of proteins involved in membrane transport of a wide variety of substrates. Among them, ABCB1, also known as MDR-1 or P-glycoprotein (P-gp), is the most characterized. By exporting xenobiotics out of the cell, P-gp activity can affect the ADME properties of several drugs. Moreover, P-gp has been found to mediate multidrug resistance in cancer cells. Thus, the inhibition of P-gp activity may lead to increased absorption and/or intracellular accumulation of co-administered drugs, enhancing their effectiveness. Using the human-mouse chimeric cryoEM 3D structure of the P-gp in the inhibitor-bound intermediate form (PDBID: 6qee), approximately 200 000 commercially available natural compounds from the ZINC database were virtually screened. To build a model able to discriminate between substrate and inhibitors, two datasets of compounds with known activity, including P-gp inhibitors, substrates, and inactive molecules were also docked. The best docking pose of selected substrates and inhibitors were used to generate 3D common feature pharmacophoric models that were combined with the Autodock Vina binding energy values to prioritize compounds for visual inspection. With this consensus approach, 13 potential candidates were identified and then tested for their ability to inhibit P-gp, using zosuquidar, a third generation P-gp inhibitor, as a reference drug. Eight compounds were found to be active with 6 of them having an IC50 lower than 5 µM in a membrane-based ATPase activity assay. Moreover, the P-gp inhibitory activity was also confirmed by two different cell-based in vitro methods. Both retrospective and prospective results demonstrate the ability of the combined structure-based pharmacophore modeling and docking-based virtual screening approach to predict novel hit compounds with inhibitory activity toward P-gp. The resulting chemical scaffolds could serve as inspiration for the optimization of novel and more potent P-gp inhibitors.

20.
Viruses ; 16(5)2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38793572

RESUMEN

Non-structural protein 1 (Nsp1) represents one of the most crucial SARS-CoV-2 virulence factors by inhibiting the translation of host mRNAs and promoting their degradation. We selected naturally occurring virus lineages with specific Nsp1 deletions located at both the N- and C-terminus of the protein. Our data provide new insights into how Nsp1 coordinates these functions on host and viral mRNA recognition. Residues 82-85 in the N-terminal part of Nsp1 likely play a role in docking the 40S mRNA entry channel, preserving the inhibition of host gene expression without affecting cellular mRNA decay. Furthermore, this domain prevents viral mRNAs containing the 5'-leader sequence to escape translational repression. These findings support the presence of distinct domains within the Nsp1 protein that differentially modulate mRNA recognition, translation and turnover. These insights have implications for the development of drugs targeting viral proteins and provides new evidences of how specific mutations in SARS-CoV-2 Nsp1 could attenuate the virus.


Asunto(s)
ARN Viral , SARS-CoV-2 , Proteínas no Estructurales Virales , Replicación Viral , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Eliminación de Secuencia , COVID-19/virología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estabilidad del ARN , Biosíntesis de Proteínas , Animales , Chlorocebus aethiops
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA