Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(17): 4554-4570.e18, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38981480

RESUMEN

Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.


Asunto(s)
Blastocystis , Dieta , Microbioma Gastrointestinal , Obesidad , Humanos , Blastocystis/metabolismo , Masculino , Femenino , Infecciones por Blastocystis , Adulto , Persona de Mediana Edad , Intestinos/parasitología , Intestinos/microbiología , Enfermedades Cardiovasculares/prevención & control , Metagenoma
2.
Cell ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39214080

RESUMEN

Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.

3.
Cell ; 176(3): 649-662.e20, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30661755

RESUMEN

The body-wide human microbiome plays a role in health, but its full diversity remains uncharacterized, particularly outside of the gut and in international populations. We leveraged 9,428 metagenomes to reconstruct 154,723 microbial genomes (45% of high quality) spanning body sites, ages, countries, and lifestyles. We recapitulated 4,930 species-level genome bins (SGBs), 77% without genomes in public repositories (unknown SGBs [uSGBs]). uSGBs are prevalent (in 93% of well-assembled samples), expand underrepresented phyla, and are enriched in non-Westernized populations (40% of the total SGBs). We annotated 2.85 M genes in SGBs, many associated with conditions including infant development (94,000) or Westernization (106,000). SGBs and uSGBs permit deeper microbiome analyses and increase the average mappability of metagenomic reads from 67.76% to 87.51% in the gut (median 94.26%) and 65.14% to 82.34% in the mouth. We thus identify thousands of microbial genomes from yet-to-be-named species, expand the pangenomes of human-associated microbes, and allow better exploitation of metagenomic technologies.


Asunto(s)
Metagenoma/genética , Metagenómica/métodos , Microbiota/genética , Macrodatos , Variación Genética/genética , Geografía , Humanos , Estilo de Vida , Filogenia , Análisis de Secuencia de ADN/métodos
4.
Nature ; 628(8007): 424-432, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38509359

RESUMEN

Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.


Asunto(s)
Neoplasias Colorrectales , Fusobacterium nucleatum , Animales , Humanos , Ratones , Adenoma/microbiología , Estudios de Casos y Controles , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/patología , Heces/microbiología , Fusobacterium nucleatum/clasificación , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/aislamiento & purificación , Fusobacterium nucleatum/patogenicidad , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Genoma Bacteriano/genética , Boca/microbiología , Femenino
5.
Nature ; 614(7946): 125-135, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36653448

RESUMEN

The human microbiome is an integral component of the human body and a co-determinant of several health conditions1,2. However, the extent to which interpersonal relations shape the individual genetic makeup of the microbiome and its transmission within and across populations remains largely unknown3,4. Here, capitalizing on more than 9,700 human metagenomes and computational strain-level profiling, we detected extensive bacterial strain sharing across individuals (more than 10 million instances) with distinct mother-to-infant, intra-household and intra-population transmission patterns. Mother-to-infant gut microbiome transmission was considerable and stable during infancy (around 50% of the same strains among shared species (strain-sharing rate)) and remained detectable at older ages. By contrast, the transmission of the oral microbiome occurred largely horizontally and was enhanced by the duration of cohabitation. There was substantial strain sharing among cohabiting individuals, with 12% and 32% median strain-sharing rates for the gut and oral microbiomes, and time since cohabitation affected strain sharing more than age or genetics did. Bacterial strain sharing additionally recapitulated host population structures better than species-level profiles did. Finally, distinct taxa appeared as efficient spreaders across transmission modes and were associated with different predicted bacterial phenotypes linked with out-of-host survival capabilities. The extent of microorganism transmission that we describe underscores its relevance in human microbiome studies5, especially those on non-infectious, microbiome-associated diseases.


Asunto(s)
Bacterias , Transmisión de Enfermedad Infecciosa , Microbioma Gastrointestinal , Ambiente en el Hogar , Microbiota , Boca , Femenino , Humanos , Lactante , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/genética , Metagenoma , Microbiota/genética , Madres , Boca/microbiología , Transmisión Vertical de Enfermedad Infecciosa , Composición Familiar , Envejecimiento , Factores de Tiempo , Viabilidad Microbiana
8.
EBioMedicine ; 99: 104917, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104504

RESUMEN

BACKGROUND: Neuroblastoma is the most frequent extracranial solid tumour in children, accounting for ∼15% of deaths due to cancer in childhood. The most common clinical presentation are abdominal tumours. An altered gut microbiome composition has been linked to multiple cancer types, and reported in murine models of neuroblastoma. Whether children with neuroblastoma display alterations in gut microbiome composition remains unexplored. METHODS: We assessed gut microbiome composition by shotgun metagenomic profiling in an observational cross-sectional study on 288 individuals, consisting of patients with a diagnosis of neuroblastoma at disease onset (N = 63), healthy controls matching the patients on the main covariates of microbiome composition (N = 94), healthy siblings of the patients (N = 13), mothers of patients (N = 59), and mothers of the controls (N = 59). We examined taxonomic and functional microbiome composition and mother-infant strain transmission patterns. FINDINGS: Patients with neuroblastoma displayed alterations in gut microbiome composition characterised by reduced microbiome richness, decreased relative abundances of 18 species (including Phocaeicola dorei and Bifidobacterium bifidum), enriched protein fermentation and reduced carbohydrate fermentation potential. Using machine learning, we could successfully discriminate patients from controls (AUC = 82%). Healthy siblings did not display such alterations but resembled the healthy control group. No significant differences in maternal microbiome composition nor mother-to-offspring transmission were detected. INTERPRETATION: Patients with neuroblastoma display alterations in taxonomic and functional gut microbiome composition, which cannot be traced to differential maternal seeding. Follow-up research should include investigating potential causal links. FUNDING: Italian Ministry of Health Ricerca Corrente and Ricerca Finalizzata 5 per mille (to MPonzoni); Fondazione Italiana Neuroblastoma (to MPonzoni); European Research Council (ERC-StG project MetaPG-716575 and ERC-CoG microTOUCH-101045015 to NS); the European H2020 program ONCOBIOME-825410 project (to NS); the National Cancer Institute of the National Institutes of Health 1U01CA230551 (to NS); the Premio Internazionale Lombardia e Ricerca 2019 (to NS); the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2017 Grant 2017J3E2W2 (to NS); EMBO ALTF 593-2020 and Knowledge Generation Project from the Spanish Ministry of Science and Innovation (PID2022-139328OA-I00) (to MV-C).


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neuroblastoma , Lactante , Niño , Femenino , Humanos , Animales , Ratones , Estudios Transversales , Metagenoma , Neuroblastoma/etiología
9.
NPJ Biofilms Microbiomes ; 10(1): 12, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374114

RESUMEN

We performed a longitudinal shotgun metagenomic investigation of the plaque microbiome associated with peri-implant diseases in a cohort of 91 subjects with 320 quality-controlled metagenomes. Through recently improved taxonomic profiling methods, we identified the most discriminative species between healthy and diseased subjects at baseline, evaluated their change over time, and provided evidence that clinical treatment had a positive effect on plaque microbiome composition in patients affected by mucositis and peri-implantitis.


Asunto(s)
Microbiota , Periimplantitis , Humanos , Periimplantitis/terapia
10.
bioRxiv ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38464031

RESUMEN

Viruses are an abundant and crucial component of the human microbiome, but accurately discovering them via metagenomics is still challenging. Currently, the available viral reference genomes poorly represent the diversity in microbiome samples, and expanding such a set of viral references is difficult. As a result, many viruses are still undetectable through metagenomics even when considering the power of de novo metagenomic assembly and binning, as viruses lack universal markers. Here, we describe a novel approach to catalog new viral members of the human gut microbiome and show how the resulting resource improves metagenomic analyses. We retrieved >3,000 viral-like particles (VLP) enriched metagenomic samples (viromes), evaluated the efficiency of the enrichment in each sample to leverage the viromes of highest purity, and applied multiple analysis steps involving assembly and comparison with hundreds of thousands of metagenome-assembled genomes to discover new viral genomes. We reported over 162,000 viral sequences passing quality control from thousands of gut metagenomes and viromes. The great majority of the retrieved viral sequences (~94.4%) were of unknown origin, most had a CRISPR spacer matching host bacteria, and four of them could be detected in >50% of a set of 18,756 gut metagenomes we surveyed. We included the obtained collection of sequences in a new MetaPhlAn 4.1 release, which can quantify reads within a metagenome matching the known and newly uncovered viral diversity. Additionally, we released the viral database for further virome and metagenomic studies of the human microbiome.

11.
NPJ Biofilms Microbiomes ; 10(1): 35, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555334

RESUMEN

Malignant bile duct obstruction is typically treated by biliary stenting, which however increases the risk of bacterial infections. Here, we analyzed the microbial content of the biliary stents from 56 patients finding widespread microbial colonization. Seventeen of 36 prevalent stent species are common oral microbiome members, associate with disease conditions when present in the gut, and include dozens of biofilm- and antimicrobial resistance-related genes. This work provides an overview of the microbial communities populating the stents.


Asunto(s)
Infecciones Bacterianas , Colestasis , Neoplasias , Humanos , Biopelículas , Colestasis/cirugía , Stents/efectos adversos , Stents/microbiología
12.
Nat Commun ; 15(1): 1633, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395948

RESUMEN

Tumor immunosurveillance plays a major role in melanoma, prompting the development of immunotherapy strategies. The gut microbiota composition, influencing peripheral and tumoral immune tonus, earned its credentials among predictors of survival in melanoma. The MIND-DC phase III trial (NCT02993315) randomized (2:1 ratio) 148 patients with stage IIIB/C melanoma to adjuvant treatment with autologous natural dendritic cell (nDC) or placebo (PL). Overall, 144 patients collected serum and stool samples before and after 2 bimonthly injections to perform metabolomics (MB) and metagenomics (MG) as prespecified exploratory analysis. Clinical outcomes are reported separately. Here we show that different microbes were associated with prognosis, with the health-related Faecalibacterium prausnitzii standing out as the main beneficial taxon for no recurrence at 2 years (p = 0.008 at baseline, nDC arm). Therapy coincided with major MB perturbations (acylcarnitines, carboxylic and fatty acids). Despite randomization, nDC arm exhibited MG and MB bias at baseline: relative under-representation of F. prausnitzii, and perturbations of primary biliary acids (BA). F. prausnitzii anticorrelated with BA, medium- and long-chain acylcarnitines. Combined, these MG and MB biomarkers markedly determined prognosis. Altogether, the host-microbial interaction may play a role in localized melanoma. We value systematic MG and MB profiling in randomized trials to avoid baseline differences attributed to host-microbe interactions.


Asunto(s)
Melanoma , Microbiota , Humanos , Reprogramación Metabólica , Microbiota/genética , Células Dendríticas
13.
Nat Med ; 30(3): 785-796, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38365950

RESUMEN

Multiple clinical trials targeting the gut microbiome are being conducted to optimize treatment outcomes for immune checkpoint blockade (ICB). To improve the success of these interventions, understanding gut microbiome changes during ICB is urgently needed. Here through longitudinal microbiome profiling of 175 patients treated with ICB for advanced melanoma, we show that several microbial species-level genome bins (SGBs) and pathways exhibit distinct patterns from baseline in patients achieving progression-free survival (PFS) of 12 months or longer (PFS ≥12) versus patients with PFS shorter than 12 months (PFS <12). Out of 99 SGBs that could discriminate between these two groups, 20 were differentially abundant only at baseline, while 42 were differentially abundant only after treatment initiation. We identify five and four SGBs that had consistently higher abundances in patients with PFS ≥12 and <12 months, respectively. Constructing a log ratio of these SGBs, we find an association with overall survival. Finally, we find different microbial dynamics in different clinical contexts including the type of ICB regimen, development of immune-related adverse events and concomitant medication use. Insights into the longitudinal dynamics of the gut microbiome in association with host factors and treatment regimens will be critical for guiding rational microbiome-targeted therapies aimed at enhancing ICB efficacy.


Asunto(s)
Microbioma Gastrointestinal , Melanoma , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Melanoma/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Cognición
14.
PeerJ Comput Sci ; 9: e1536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810360

RESUMEN

Scholarly knowledge graphs (SKG) are knowledge graphs representing research-related information, powering discovery and statistics about research impact and trends. Author name disambiguation (AND) is required to produce high-quality SKGs, as a disambiguated set of authors is fundamental to ensure a coherent view of researchers' activity. Various issues, such as homonymy, scarcity of contextual information, and cardinality of the SKG, make simple name string matching insufficient or computationally complex. Many AND deep learning methods have been developed, and interesting surveys exist in the literature, comparing the approaches in terms of techniques, complexity, performance, etc. However, none of them specifically addresses AND methods in the context of SKGs, where the entity-relationship structure can be exploited. In this paper, we discuss recent graph-based methods for AND, define a framework through which such methods can be confronted, and catalog the most popular datasets and benchmarks used to test such methods. Finally, we outline possible directions for future work on this topic.

15.
J Biomed Semantics ; 14(1): 17, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919767

RESUMEN

BACKGROUND: Open Science Graphs (OSGs) are scientific knowledge graphs representing different entities of the research lifecycle (e.g. projects, people, research outcomes, institutions) and the relationships among them. They present a contextualized view of current research that supports discovery, re-use, reproducibility, monitoring, transparency and omni-comprehensive assessment. A Data Management Plan (DMP) contains information concerning both the research processes and the data collected, generated and/or re-used during a project's lifetime. Automated solutions and workflows that connect DMPs with the actual data and other contextual information (e.g., publications, fundings) are missing from the landscape. DMPs being submitted as deliverables also limit their findability. In an open and FAIR-enabling research ecosystem information linking between research processes and research outputs is essential. ARGOS tool for FAIR data management contributes to the OpenAIRE Research Graph (RG) and utilises its underlying services and trusted sources to progressively automate validation and automations of Research Data Management (RDM) practices. RESULTS: A comparative analysis was conducted between the data models of ARGOS and OpenAIRE Research Graph against the DMP Common Standard. Following this, we extended ARGOS with export format converters and semantic tagging, and the OpenAIRE RG with a DMP entity and semantics between existing entities and relationships. This enabled the integration of ARGOS machine actionable DMPs (ma-DMPs) to the OpenAIRE OSG, enriching and exposing DMPs as FAIR outputs. CONCLUSIONS: This paper, to our knowledge, is the first to introduce exposing ma-DMPs in OSGs and making the link between OSGs and DMPs, introducing the latter as entities in the research lifecycle. Further, it provides insight to ARGOS DMP service interoperability practices and integrations to populate the OpenAIRE Research Graph with DMP entities and relationships and strengthen both FAIRness of outputs as well as information exchange in a standard way.


Asunto(s)
Manejo de Datos , Humanos , Reproducibilidad de los Resultados
16.
Curr Biol ; 33(10): 1939-1950.e4, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37116481

RESUMEN

The human microbiome seeding starts at birth, when pioneer microbes are acquired mainly from the mother. Mode of delivery, antibiotic prophylaxis, and feeding method have been studied as modulators of mother-to-infant microbiome transmission, but other key influencing factors like modern westernized lifestyles with high hygienization, high-calorie diets, and urban settings, compared with non-westernized lifestyles have not been investigated yet. In this study, we explored the mother-infant sharing of characterized and uncharacterized microbiome members via strain-resolved metagenomics in a cohort of Ethiopian mothers and infants, and we compared them with four other cohorts with different lifestyles. The westernized and non-westernized newborns' microbiomes composition overlapped during the first months of life more than later in life, likely reflecting similar initial breast-milk-based diets. Ethiopian and other non-westernized infants shared a smaller fraction of the microbiome with their mothers than did most westernized populations, despite showing a higher microbiome diversity, and uncharacterized species represented a substantial fraction of those shared in the Ethiopian cohort. Moreover, we identified uncharacterized species belonging to the Selenomonadaceae and Prevotellaceae families specifically present and shared only in the Ethiopian cohort, and we showed that a locally produced fermented food, injera, can contribute to the higher diversity observed in the Ethiopian infants' gut with bacteria that are not part of the human microbiome but are acquired through fermented food consumption. Taken together, these findings highlight the fact that lifestyle can impact the gut microbiome composition not only through differences in diet, drug consumption, and environmental factors but also through its effect on mother-infant strain-sharing patterns.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Femenino , Humanos , Lactante , Recién Nacido , Bacterias , Leche Humana/microbiología , Madres , Heces/microbiología
17.
Cell Host Microbe ; 31(11): 1804-1819.e9, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37883976

RESUMEN

The Segatella copri (formerly Prevotella copri) complex (ScC) comprises taxa that are key members of the human gut microbiome. It was previously described to contain four distinct phylogenetic clades. Combining targeted isolation with large-scale metagenomic analysis, we defined 13 distinct Segatella copri-related species, expanding the ScC complex beyond four clades. Complete genome reconstruction of thirteen strains from seven species unveiled the presence of genetically diverse large circular extrachromosomal elements. These elements are consistently present in most ScC species, contributing to intra- and inter-species diversities. The nine species-level clades present in humans display striking differences in prevalence and intra-species genetic makeup across human populations. Based on a meta-analysis, we found reproducible associations between members of ScC and the male sex and positive correlations with lower visceral fat and favorable markers of cardiometabolic health. Our work uncovers genomic diversity within ScC, facilitating a better characterization of the human microbiome.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Masculino , Microbioma Gastrointestinal/genética , Metagenoma , Filogenia , Prevotella , Femenino
18.
Cell Rep ; 42(5): 112464, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37141097

RESUMEN

Mouse models are key tools for investigating host-microbiome interactions. However, shotgun metagenomics can only profile a limited fraction of the mouse gut microbiome. Here, we employ a metagenomic profiling method, MetaPhlAn 4, which exploits a large catalog of metagenome-assembled genomes (including 22,718 metagenome-assembled genomes from mice) to improve the profiling of the mouse gut microbiome. We combine 622 samples from eight public datasets and an additional cohort of 97 mouse microbiomes, and we assess the potential of MetaPhlAn 4 to better identify diet-related changes in the host microbiome using a meta-analysis approach. We find multiple, strong, and reproducible diet-related microbial biomarkers, largely increasing those identifiable by other available methods relying only on reference information. The strongest drivers of the diet-induced changes are uncharacterized and previously undetected taxa, confirming the importance of adopting metagenomic methods integrating metagenomic assemblies for comprehensive profiling.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Microbiota/genética , Metagenoma , Dieta , Metagenómica/métodos
19.
Nat Biotechnol ; 41(11): 1633-1644, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36823356

RESUMEN

Metagenomic assembly enables new organism discovery from microbial communities, but it can only capture few abundant organisms from most metagenomes. Here we present MetaPhlAn 4, which integrates information from metagenome assemblies and microbial isolate genomes for more comprehensive metagenomic taxonomic profiling. From a curated collection of 1.01 M prokaryotic reference and metagenome-assembled genomes, we define unique marker genes for 26,970 species-level genome bins, 4,992 of them taxonomically unidentified at the species level. MetaPhlAn 4 explains ~20% more reads in most international human gut microbiomes and >40% in less-characterized environments such as the rumen microbiome and proves more accurate than available alternatives on synthetic evaluations while also reliably quantifying organisms with no cultured isolates. Application of the method to >24,500 metagenomes highlights previously undetected species to be strong biomarkers for host conditions and lifestyles in human and mouse microbiomes and shows that even previously uncharacterized species can be genetically profiled at the resolution of single microbial strains.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Ratones , Metagenoma/genética , Microbiota/genética , Metagenómica/métodos , Filogenia
20.
PeerJ Comput Sci ; 8: e1058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262137

RESUMEN

Deduplication is a technique aiming at identifying and resolving duplicate metadata records in a collection. This article describes FDup (Flat Collections Deduper), a general-purpose software framework supporting a complete deduplication workflow to manage big data record collections: metadata record data model definition, identification of candidate duplicates, identification of duplicates. FDup brings two main innovations: first, it delivers a full deduplication framework in a single easy-to-use software package based on Apache Spark Hadoop framework, where developers can customize the optimal and parallel workflow steps of blocking, sliding windows, and similarity matching function via an intuitive configuration file; second, it introduces a novel approach to improve performance, beyond the known techniques of "blocking" and "sliding window", by introducing a smart similarity matching function T-match. T-match is engineered as a decision tree that drives the comparisons of the fields of two records as branches of predicates and allows for successful or unsuccessful early-exit strategies. The efficacy of the approach is proved by experiments performed over big data collections of metadata records in the OpenAIRE Research Graph, a known open access knowledge base in Scholarly communication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA