Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 31(10): 2193-202, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21757658

RESUMEN

OBJECTIVE: The investment of newly formed endothelial cell tubes with differentiated smooth muscle cells (SMC) is critical for appropriate vessel formation, but the underlying mechanisms remain unknown. We previously showed that depletion of focal adhesion kinase (FAK) in the nkx2.5 expression domain led to aberrant outflow tract (OFT) morphogenesis and strove herein to determine the cell types and mechanisms involved. METHODS AND RESULTS: We crossed fak(loxp) targeted mice with available Cre drivers to deplete FAK in OFT SMC (FAK(wnt) and FAK(nk)) or coronary SMC (FAK(cSMC)). In each case, depletion of FAK led to defective vasculogenesis that was incompatible with postnatal life. Immunohistochemical analysis of the mutant vascular structures revealed that FAK was not required for progenitor cell proliferation, survival, or differentiation into SMC but was necessary for subsequent SMC recruitment to developing vasculature. Using a novel FAK-null SMC culture model, we found that depletion of FAK did not influence SMC growth or survival, but blocked directional SMC motility and invasion toward the potent endothelial-derived chemokine, platelet-derived growth factor PDGFBB. FAK depletion resulted in unstable lamellipodial protrusions due to defective spatial-temporal activation of the small GTPase, Rac-1, and lack of Rac1-dependent recruitment of cortactin (an actin stabilizing protein) to the leading edge. Moreover, FAK null SMC exhibited a significant reduction in stimulated extracellular matrix degradation. CONCLUSIONS: FAK drives PDGFBB-stimulated SMC chemotaxis/invasion and is essential for SMC to appropriately populate the aorticopulmonary septum and the coronary vascular plexus.


Asunto(s)
Quimiotaxis , Quinasa 1 de Adhesión Focal/metabolismo , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Neovascularización Fisiológica , Animales , Aorta/embriología , Aorta/enzimología , Apoptosis , Becaplermina , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Quimiotaxis/genética , Vasos Coronarios/embriología , Vasos Coronarios/enzimología , Cortactina/metabolismo , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Quinasa 1 de Adhesión Focal/deficiencia , Quinasa 1 de Adhesión Focal/genética , Regulación del Desarrollo de la Expresión Génica , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/embriología , Neovascularización Fisiológica/genética , Neuropéptidos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogénicas c-sis , Seudópodos/enzimología , Arteria Pulmonar/embriología , Arteria Pulmonar/enzimología , Codorniz/embriología , Interferencia de ARN , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA