Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977472

RESUMEN

Mitochondria are the key energy provider to highly proliferating cancer cells, and are subsequently considered one of the critical targets in cancer therapeutics. Several compounds have been studied for their mitochondria-targeting ability in cancer cells. These studies' outcomes have led to the invention of "mitocans", a category of drug known to precisely target the cancer cells' mitochondria. Based upon their mode of action, mitocans have been divided into eight classes. To date, different synthetic compounds have been suggested to be potential mitocans, but unfortunately, they are observed to exert adverse effects. Many studies have been published justifying the medicinal significance of large numbers of natural agents for their mitochondria-targeting ability and anticancer activities with minimal or no side effects. However, these natural agents have never been critically analyzed for their mitochondria-targeting activity. This review aims to evaluate the various natural agents affecting mitochondria and categorize them in different classes. Henceforth, our study may further support the potential mitocan behavior of various natural agents and highlight their significance in formulating novel potential anticancer therapeutics.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Humanos , Mitocondrias/patología , Neoplasias/metabolismo , Neoplasias/patología
2.
Artículo en Inglés | MEDLINE | ID: mdl-37929731

RESUMEN

Diabetes is a series of metabolic disorders that can be categorized into three types depending on different aspects associated with age at onset, intensity of insulin resistance, and beta- cell dysfunction: Type 1 and 2 Diabetes, and Gestational Diabetes Mellitus. Type 2 Diabetes Mellitus (T2DM) has recently been found to account for more than 85% of diabetic cases. The current review intends to raise awareness among clinicians/researchers that combining vitamin D3 with metformin may pave the way for better T2DM treatment and management. An extensive literature survey was performed to analyze vitamin D's role in regulating insulin secretion, their action on the target cells and thus maintaining the normal glucose level. On the other side, the anti-hyperglycemic effect of metformin as well as its detailed mechanism of action was also studied. Interestingly both compounds are known to exhibit the antioxidant effect too. Literature supporting the correlation between diabetic phenotypes and deficiency of vitamin D was also explored further. To thoroughly understand the common/overlapping pathways responsible for the antidiabetic as well as antioxidant nature of metformin and vitamin D3, we compared their antihyperglycemic and antioxidant activities. With this background, we are proposing the hypothesis that it would be of great interest if these two compounds could work in synergy to better manage the condition of T2DM and associated disorders.

3.
Curr Gene Ther ; 23(1): 20-40, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35345999

RESUMEN

Neurological and neuropsychiatric disorders are the main risks for the health care system, exhibiting a huge socioeconomic load. The available range of pharmacotherapeutics mostly provides palliative consequences and fails to treat such conditions. The molecular etiology of various neurological and neuropsychiatric disorders is mostly associated with a change in genetic background, which can be inherited/triggered by other environmental factors. To address such conditions, gene therapy is considered a potential approach claiming a permanent cure of the disease primarily by deletion, silencing, or edition of faulty genes and by insertion of healthier genes. In gene therapy, vectors (viral/nonvial) play an important role in delivering the desired gene to a specific region of the brain. Targeted gene therapy has unraveled opportunities for the treatment of many neurological and neuropsychiatric disorders. For improved gene delivery, the current techniques mainly focus on designing a precise viral vector, plasmid transfection, nanotechnology, microRNA, and in vivo clustered regulatory interspaced short palindromic repeats (CRISPR)-based therapy. These latest techniques have great benefits in treating predominant neurological and neurodevelopmental disorders, including Parkinson's disease, Alzheimer's disease, and autism spectrum disorder, as well as rarer diseases. Nevertheless, all these delivery methods have their limitations, including immunogenic reactions, off-target effects, and a deficiency of effective biomarkers to appreciate the effectiveness of therapy. In this review, we present a summary of the current methods in targeted gene delivery, followed by the limitations and future direction of gene therapy for the cure of neurological and neuropsychiatric disorders.


Asunto(s)
Trastorno del Espectro Autista , Edición Génica , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Trastorno del Espectro Autista/genética , Terapia Genética/métodos , Técnicas de Transferencia de Gen
4.
Antioxid Redox Signal ; 39(7-9): 591-619, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37470214

RESUMEN

Significance: Mitochondria are subcellular organelles performing essential metabolic functions contributing to cellular bioenergetics and regulation of cell growth or death. The basic mitochondrial function in fulfilling the need for cell growth and vitality is evidenced whereby cancer cells with depleted mitochondrial DNA (rho zero, p0 cells) no longer form tumors until newly recruited mitochondria are internalized into the rho zero cells. Herein lies the absolute dependency on mitochondria for tumor growth. Hence, mitochondria are key regulators of cell death (by apoptosis, necroptosis, or other forms of cell death) and are, therefore, important targets for anticancer therapy. Recent Advances: Mitochondrial plasticity regulating their state of fusion or fission is key to the chemoresistance properties of cancer cells by promoting pro-survival pathways, enabling the mitochondria to mitigate against the cellular stresses and extreme conditions within the tumor microenvironment caused by chemotherapy, hypoxia, or oxidative stress. Critical Issues: This review discusses many characteristics of mitochondria, the processes and pathways controlling the dynamic changes occurring in the morphology of mitochondria, the roles of reactive oxygen species, and their relationship with mitochondrial fission or fusion. It also examines the relationship of redox to mitophagy when mitochondria become compromised and its effect on cancer cell survival, stemness, and the changes accompanying malignant progression from primary tumors to metastatic disease. Future Directions: A challenging question that arises is whether the changes in mitochondrial dynamics and their regulation can provide opportunities for improving drug targeting during cancer treatment and enhancing survival outcomes. Antioxid. Redox Signal. 39, 591-619.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Mitocondrias/metabolismo , Neoplasias/metabolismo , ADN Mitocondrial/metabolismo , Oxidación-Reducción , Dinámicas Mitocondriales , Microambiente Tumoral
5.
Curr Gene Ther ; 23(2): 148-162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36366843

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to death by progressive paralysis and respiratory failure within 2-4 years of onset. About 90-95% of ALS cases are sporadic (sALS), and 5-10% are inherited through family (fALS). Though the mechanisms of the disease are still poorly understood, so far, approximately 40 genes have been reported as ALS causative genes. The mutations in some crucial genes, like SOD1, C9ORF72, FUS, and TDP-43, are majorly associated with ALS, resulting in ROS-associated oxidative stress, excitotoxicity, protein aggregation, altered RNA processing, axonal and vesicular trafficking dysregulation, and mitochondrial dysfunction. Recent studies show that dysfunctional cellular pathways get restored as a result of the repair of a single pathway in ALS. In this review article, our aim is to identify putative targets for therapeutic development and the importance of a single suppressor to reduce multiple symptoms by focusing on important mutations and the phenotypic suppressors of dysfunctional cellular pathways in crucial genes as reported by other studies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/genética , Mutación
6.
J Alzheimers Dis ; 93(2): 705-726, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37066913

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common type of neurodegenerative dementia affecting people in their later years of life. The AD prevalence rate has significantly increased due to a lack of early detection technology and low therapeutic efficacy. Despite recent scientific advances, some aspects of AD pathological targets still require special attention. Certain traditionally consumed phytocompounds have been used for thousands of years to treat such pathologies. The standard extract of Gingko biloba (EGB761) is a combination of 13 macro phyto-compounds and various other micro phytocompounds that have shown greater therapeutic potential against the pathology of AD. OBJECTIVE: Strong physiological evidence of cognitive health preservation has been observed in elderly people who keep an active lifestyle. According to some theories, consuming certain medicinal extracts helps build cognitive reserve. We outline the research employing EGB761 as a dual target for AD. METHODS: This study investigates various inhibitory targets against AD using computational approaches such as molecular docking, network pharmacology, ADMET (full form), and bioactivity prediction of the selected compounds. RESULTS: After interaction studies were done for all the phytoconstituents of EGB761, it was concluded that all four of the phytocompounds (kaempferol, isorhamnetin, quercetin, and ginkgotoxin) showed the maximum inhibitory activity against acetylcholinesterase (AChE) and GSK3ß. CONCLUSION: The highly active phytocompounds of EGB761, especially quercetin, kaempferol, and isorhamnetin, have better activity against AChE and GSK3ß than its reported synthetic drug, according to molecular docking and network pharmacology research. These compounds may act on multiple targets in the protein network of AD. The AChE theory was primarily responsible for EGB761's therapeutic efficacy in treating AD.


Asunto(s)
Enfermedad de Alzheimer , Ginkgo biloba , Humanos , Anciano , Ginkgo biloba/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Simulación del Acoplamiento Molecular , Glucógeno Sintasa Quinasa 3 beta , Quempferoles/farmacología , Quempferoles/uso terapéutico , Quercetina/uso terapéutico , Acetilcolinesterasa/metabolismo , Farmacología en Red , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
7.
Diagnostics (Basel) ; 13(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36766442

RESUMEN

The vast use of corticosteroids (CCSs) globally has led to an increase in CCS-induced neuropsychiatric disorders (NPDs), a very common manifestation in patients after CCS consumption. These neuropsychiatric disorders range from depression, insomnia, and bipolar disorders to panic attacks, overt psychosis, and many other cognitive changes in such subjects. Though their therapeutic importance in treating and improving many clinical symptoms overrides the complications that arise after their consumption, still, there has been an alarming rise in NPD cases in recent years, and they are seen as the greatest public health challenge globally; therefore, these potential side effects cannot be ignored. It has also been observed that many of the neuronal functional activities are regulated and controlled by genomic variants with epigenetic factors (DNA methylation, non-coding RNA, and histone modeling, etc.), and any alterations in these regulatory mechanisms affect normal cerebral development and functioning. This study explores a general overview of emerging concerns of CCS-induced NPDs, the effective molecular biology approaches that can revitalize NPD therapy in an extremely specialized, reliable, and effective manner, and the possible gene-editing-based therapeutic strategies to either prevent or cure NPDs in the future.

8.
Chem Biol Drug Des ; 102(5): 955-971, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37518817

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder that affects 2%-3% of the population worldwide. Clinical presentation of PD includes motor and non-motor symptoms. The interplay between pathogenic factors such as increased oxidative stress, neuroinflammation, mitochondrial dysfunction and apoptosis are responsible for neurodegeneration in PD. Intrastriatal administration of 6-hydroxy dopamine (6-OHDA) in rat brain provoked oxidative and nitrosative stress by decreasing endogenous antioxidants such as superoxide dismutase, catalase, glutathione, glutathione peroxidase and glutathione reductase. Consequently, interleukin-6, tumour necrosis-α, interferon-γ and cyclooxygenase-2 mediated neuroinflammation leads to mitochondrial dysfunction, involving inhibition of complex-II and IV activities, followed by apoptosis and degeneration of striatal dopaminergic neurons. Degeneration of dopaminergic neurons resulted in reduced dopamine turnover, consequently induced behavioural abnormalities in rats. Activation of peroxisome proliferator-activated receptors (PPARs) have protective role in PD by modulating response of antioxidant enzymes, neuroinflammation and apoptosis in various animal models of PD. Saroglitazar (SG) being dual PPAR-α/γ agonist activates both PPAR-α and PPAR-γ receptors and provide neuroprotection by reducing oxidative stress, neuroinflammation, mitochondrial dysfunction and apoptosis of dopaminergic cells in 6-OHDA induced PD in rats. Thereby, SG restored striatal histopathological damage and dopamine concentration in rat striatum, and behavioural alterations in rats. Thus, SG proved neuroprotective effects in rat model of PD. Potential benefits of SG in rat model of PD advocates to consider it for further preclinical and clinical evaluation.

9.
Chem Biol Drug Des ; 102(3): 523-535, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37118873

RESUMEN

Geraniol (GE), an acyclic monoterpene, is a chief constituent of essential oils of herbs and fruits. It possesses diverse pharmacological actions like antioxidant, anti-inflammatory, anti-apoptotic, and anti-parkinson. However, its neuroprotective potential in stroke is yet to be explored at large. The present study evaluated the neuroprotective potential of GE against the global model of cerebral ischemia/reperfusion (I/R)-injury in rats. Bilateral common carotid artery (BCCA) occlusion for 30 min followed by 7 days of reperfusion caused varied biochemical/enzymatic alterations viz. increase in levels of lipid peroxidation (LPO), nitric oxide (NO), xanthine oxidase (XO), and decrease in the levels of cerebroprotectives like superoxide dismutase (SOD), catalase (CAT), total thiols, and glutathione (GSH). GE-pretreatment markedly reversed these changes and restored the levels of protective enzymatic and non-enzymatic antioxidants near to normal compared to I/R group. Besides, GE treatment showed marked improvement in anxiety-related behavior and neuronal deficits in animals subjected to I/R injury. Moreover, 2,3,5-triphenyl tetrazolium chloride (TTC)-stained rat brain coronal sections and histopathological studies revealed neuronal protection against I/R-injury, as evidenced by a reduction in infarct area (%) and an increase in hippocampal CA1 neuronal density in the GE-treated groups. The results of this study revealed that GE exhibited potential neuroprotective activity by reducing oxidative stress and infarction area, and protecting hippocampal CA1 neurons against I/R-injury in the global stroke model in rats.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Daño por Reperfusión , Accidente Cerebrovascular , Ratas , Animales , Monoterpenos Acíclicos/uso terapéutico , Monoterpenos Acíclicos/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/prevención & control , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Hipocampo/metabolismo , Hipocampo/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico
10.
J Alzheimers Dis ; 96(3): 877-912, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927255

RESUMEN

Alzheimer's disease (AD) is characterized by the progressive degeneration of neuronal cells. With the increase in aged population, there is a prevalence of irreversible neurodegenerative changes, causing a significant mental, social, and economic burden globally. The factors contributing to AD are multidimensional, highly complex, and not completely understood. However, it is widely known that aging, neuroinflammation, and excessive production of reactive oxygen species (ROS), along with other free radicals, substantially contribute to oxidative stress and cell death, which are inextricably linked. While oxidative stress is undeniably important in AD, limiting free radicals and ROS levels is an intriguing and potential strategy for deferring the process of neurodegeneration and alleviating associated symptoms. Therapeutic compounds from natural sources have recently become increasingly accepted and have been effectively studied for AD treatment. These phytocompounds are widely available and a multitude of holistic therapeutic efficiencies for treating AD owing to their antioxidant, anti-inflammatory, and biological activities. Some of these compounds also function by stimulating cholinergic neurotransmission, facilitating the suppression of beta-site amyloid precursor protein-cleaving enzyme 1, α-synuclein, and monoamine oxidase proteins, and deterring the occurrence of AD. Additionally, various phenolic, flavonoid, and terpenoid phytocompounds have been extensively described as potential palliative agents for AD progression. Preclinical studies have shown their involvement in modulating the cellular redox balance and minimizing ROS formation, displaying them as antioxidant agents with neuroprotective abilities. This review emphasizes the mechanistic role of natural products in the treatment of AD and discusses the various pathological hypotheses proposed for AD.


Asunto(s)
Enfermedad de Alzheimer , Antioxidantes , Humanos , Anciano , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Enfermedad de Alzheimer/patología , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Oxidación-Reducción
11.
Eur Heart J Case Rep ; 6(7): ytac276, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35911494

RESUMEN

Background: Robotic percutaneous coronary intervention (R-PCI) is being preferred over traditional PCI procedures owing to reduced radiation exposure to the personnel performing this technique. However, there are some challenges in using pressure wires in R-PCI. Case summary: This is the first article reporting the usage of pressure wire navigation in R-PCI. We have discussed a case of severe mid-right coronary artery disease, managed with physiology-assisted R-PCI. Software features of R-PCI such as Rotate-On-Retract were effectively used to negotiate Pressure Wire™ X across the tortuous artery. Stenting was successfully carried out with Pressure Wire™ X/R-PCI without any adverse events during or after the procedure. Discussion: Pressure Wire™ X was used with certain modifications to negotiate tortuous arteries. The R-PCI procedure was carried out successfully without any adverse events during or after the procedure.

12.
Mitochondrion ; 62: 50-73, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758363

RESUMEN

Changes in reactive oxygen species (ROS) levels affect many aspects of cell behavior. During carcinogenesis, moderate ROS production modifies gene expression to alter cell function, elevating metabolic activity and ROS. To avoid extreme ROS-activated death, cancer cells increase antioxidative capacity, regulating sustained ROS levels that promote growth. Anticancer therapies are exploring inducing supranormal, cytotoxic oxidative stress levels either inhibiting antioxidative capacity or promoting excess ROS to selectively destroy cancer cells, triggering mechanisms such as apoptosis, autophagy, necrosis, or ferroptosis. This review exemplifies pro-oxidants (natural/synthetic/repurposed drugs) and their clinical significance as cancer therapies providing revolutionary approaches.


Asunto(s)
Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Oxidantes/farmacología , Humanos , Oxidantes/uso terapéutico , Oxidación-Reducción
13.
JACC Case Rep ; 4(22): 1542-1547, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36444174

RESUMEN

We describe a 38-year-old Middle Eastern woman with a long history of multiple cardiac surgical procedures for mitral valve disease who presented with intractable heart failure from severe mitral paravalvular regurgitation requiring multiple medical admissions since 2019. She was deemed a very high surgical risk and was treated successfully with a percutaneous technique. (Level of Difficulty: Advanced.).

14.
JACC Case Rep ; 4(7): 397-401, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35693897

RESUMEN

A 66-year-old female patient underwent transfemoral coronary angioplasty. Three weeks after the procedure, she presented with abdominal pain. An abdominal computed tomography scan revealed an unusual femoral arteriolymphatic fistula, which was managed with selective angiography-guided glue embolization. (Level of Difficulty: Advanced.).

15.
Explor Target Antitumor Ther ; 3(6): 866-888, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36654821

RESUMEN

Glioblastoma multiforme (GBM) is known as the most aggressive and prevalent brain tumor with a high mortality rate. It is reported in people who are as young as 10 years old to as old as over 70 years old, exhibiting inter and intra tumor heterogeneity. There are several genomic and proteomic investigations that have been performed to find the unexplored potential targets of the drug against GBM. Therefore, certain effective targets have been taken to further validate the studies embarking on the robustness in the field of medicinal chemistry followed by testing in clinical trials. Also, The Cancer Genome Atlas (TCGA) project has identified certain overexpressed targets involved in the pathogenesis of GBM in three major pathways, i.e., tumor protein 53 (p53), retinoblastoma (RB), and receptor tyrosine kinase (RTK)/rat sarcoma virus (Ras)/phosphoinositide 3-kinase (PI3K) pathways. This review focuses on the compilation of recent developments in the fight against GBM thus, directing future research into the elucidation of pathogenesis and potential cure for GBM. Also, it highlights the potential biomarkers that have undergone extensive research and have promising prognostic and predictive values. Additionally, this manuscript analyses the advent of gene therapy and immunotherapy, unlocking the way to consider treatment approaches other than, or in addition to, conventional chemo-radiation therapies. This review study encompasses all the relevant research studies associated with the pathophysiology, occurrence, diagnostic tools, and therapeutic intervention for GBM. It highlights the evolution of various therapeutic perspectives against GBM from the most conventional form of radiotherapy to the recent advancement of gene/cell/immune therapy. Further, the review focuses on various targeted therapies for GBM including chemotherapy sensitization, radiotherapy, nanoparticles based, immunotherapy, cell therapy, and gene therapy which would offer a comprehensive account for exploring several facets related to GBM prognostics.

16.
Transl Neurosci ; 13(1): 527-546, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36741545

RESUMEN

Approximately 6.8 million people die annually because of problems related to the central nervous system (CNS), and out of them, approximately 1 million people are affected by neurodegenerative diseases that include Alzheimer's disease, multiple sclerosis, epilepsy, and Parkinson's disease. CNS problems are a primary concern because of the complexity of the brain. There are various drugs available to treat CNS disorders and overcome problems with toxicity, specificity, and delivery. Barriers like the blood-brain barrier (BBB) are a challenge, as they do not allow therapeutic drugs to cross and reach their target. Researchers have been searching for ways to allow drugs to pass through the BBB and reach the target sites. These problems highlight the need of nanotechnology to alter or manipulate various processes at the cellular level to achieve the desired attributes. Due to their nanosize, nanoparticles are able to pass through the BBB and are an effective alternative to drug administration and other approaches. Nanotechnology has the potential to improve treatment and diagnostic techniques for CNS disorders and facilitate effective drug transfer. With the aid of nanoengineering, drugs could be modified to perform functions like transference across the BBB, altering signaling pathways, targeting specific cells, effective gene transfer, and promoting regeneration and preservation of nerve cells. The involvement of a nanocarrier framework inside the delivery of several neurotherapeutic agents used in the treatment of neurological diseases is reviewed in this study.

17.
J Adv Res ; 40: 207-221, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36100328

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is an insidious, irreversible, and progressive neurodegenerative health condition manifesting as cognitive deficits and amyloid beta (Aß) plaques and neurofibrillary tangles. Approximately 50 million individuals are affected by AD, and the number is rapidly increasing globally. This review explores the role of CRISPR/Cas9 gene editing in the management of AD and its clinical manifestations. AIM OF REVIEW: This review aims to provide a deep insight into the recent progress in CRISPR/Cas9-mediated genome editing and its use against neurodegenerative disorders, specifically AD. However, we have referred to its use against parkinsons's disease (PD), Huntington's disease (HD), and other human diseases, as is one of the most promising and emerging technologies for disease treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW: The pathophysiology of AD is known to be linked with gene mutations, that is, presenilin (PSEN) and amyloid beta precursor protein (APP). However, clinical trials focused at the genetic level could not meet the desired efficiency. The CRISPR/Cas9 genome editing tool is one of the most powerful technologies for correcting inconsistent genetic signatures and now extensively used for AD management. It has significant potential for the correction of undesired gene mutations associated with AD. This technology has allowed the development of empirical AD models, therapeutic lines, and diagnostic approaches for better understanding the nervous system, from in vitro to in vivo models.


Asunto(s)
Enfermedad de Alzheimer , Edición Génica , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Sistemas CRISPR-Cas/genética , Humanos
18.
Neurosci Biobehav Rev ; 142: 104871, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36122738

RESUMEN

Neurons depend on mitochondrial functions for membrane excitability, neurotransmission, and plasticity. Mitochondrial dynamics are important for neural cell maintenance. To maintain mitochondrial homeostasis, lysosomes remove dysfunctional mitochondria through mitophagy. Mitophagy promotes mitochondrial turnover and prevents the accumulation of dysfunctional mitochondria. In many neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), mitophagy is disrupted in neurons. Mitophagy is regulated by several proteins; recently, Rho-associated coiled-coil containing protein kinase 2 (ROCK2) has been suggested to negatively regulate the Parkin-dependent mitophagy pathway. Thus, ROCK2 inhibition may be a promising therapy for NDDs. This review summarizes the mitophagy pathway, the role of ROCK2 in Parkin-dependent mitophagy regulation, and mitophagy impairment in the pathology of AD. We further discuss different ROCK inhibitors (synthetic drugs, natural compounds, and gene therapy-based approaches) and examine their effects on triggering neuronal growth and neuroprotection in AD and other NDDs. This comprehensive overview of the role of ROCK in mitophagy inhibition provides a possible explanation for the significance of ROCK inhibitors in the therapeutic management of AD and other NDDs.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Mitofagia/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Mitocondrias/metabolismo , Neuronas/fisiología , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/farmacología
19.
Open Biol ; 12(3): 210289, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35291879

RESUMEN

Developmental signalling pathways such as Wnt/ß-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term 'embryonic' might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood-brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer's, Parkinson's and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades del Sistema Nervioso , Adulto , Esclerosis Amiotrófica Lateral/metabolismo , Barrera Hematoencefálica/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/metabolismo , Transducción de Señal
20.
Mitochondrion ; 61: 138-146, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34606995

RESUMEN

Hexokinase II (HK2), a glycolytic enzyme is commonly overexpressed in most cancer types. The overexpression of HK2 is reported to promote the survival of cancer cells by facilitating the constant ATP generation and protecting the cancer cell against apoptotic cell death. Hence, HK2 is considered as potential target of many mitochondria targeting anticancerous agents (referred to as mitocans). Most of the existing mitocans are synthetic and hence such compounds are observed to exhibit adverse effects, witnessed through many experimental outcomes. These limitations necessitates hunting for an alternative source of mitocans with minimum/no side effects. The need for an alternative therapy points towards the ethnomedicinal herbs, known for their minimal side effects and effectiveness. Henceforth recent studies have put forth the effort to utilize anticancer herbs in formulating naturally derived mitocans as an add-on to improve cancer therapeutics. So, our study aims to explore the HK2 targeting potential of phytocompounds from the selected anticancerous herbs Andrographis paniculata (AP) and Centella asiatica (CA). 60 phytocompounds collectively from CA and AP were docked against HK2 and drug-likeness prediction of the selected phytocompounds was performed to screen the best possible ligand for HK2. Furthermore, the docked complexes were subjected to molecular dynamics simulations (MDS) to analyse the molecular mechanism of protein-ligand interactions. The results of the study suggest that the natural compounds asiatic acid and bayogenin (from CA) and andrographolide (from AP) can bepotential natural mitocans by targeting HK2. Further experimental studies (in-vitro and in-vivo) are required to validate the results.


Asunto(s)
Andrographis paniculata/química , Antineoplásicos/farmacología , Centella/química , Hexoquinasa/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Antineoplásicos/química , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hexoquinasa/química , Hexoquinasa/genética , Hexoquinasa/metabolismo , Mitocondrias/efectos de los fármacos , Modelos Moleculares , Fitoquímicos/química , Fitoterapia , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA