Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 37(21-24): 968-983, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37977822

RESUMEN

The spliceosomal gene SF3B1 is frequently mutated in cancer. While it is known that SF3B1 hotspot mutations lead to loss of splicing factor SUGP1 from spliceosomes, the cancer-relevant SF3B1-SUGP1 interaction has not been characterized. To address this issue, we show by structural modeling that two regions flanking the SUGP1 G-patch make numerous contacts with the region of SF3B1 harboring hotspot mutations. Experiments confirmed that all the cancer-associated mutations in these regions, as well as mutations affecting other residues in the SF3B1-SUGP1 interface, not only weaken or disrupt the interaction but also alter splicing similarly to SF3B1 cancer mutations. Finally, structural modeling of a trimeric protein complex reveals that the SF3B1-SUGP1 interaction "loops out" the G-patch for interaction with the helicase DHX15. Our study thus provides an unprecedented molecular view of a protein complex essential for accurate splicing and also reveals that numerous cancer-associated mutations disrupt the critical SF3B1-SUGP1 interaction.


Asunto(s)
Neoplasias , Empalmosomas , Humanos , ARN Mensajero/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Factores de Empalme de ARN/química , Empalme del ARN/genética , Neoplasias/genética , Neoplasias/metabolismo , Mutación , Fosfoproteínas/metabolismo
2.
Genes Dev ; 36(15-16): 876-886, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36207140

RESUMEN

Nucleoli are the major cellular compartments for the synthesis of rRNA and assembly of ribosomes, the macromolecular complexes responsible for protein synthesis. Given the abundance of ribosomes, there is a huge demand for rRNA, which indeed constitutes ∼80% of the mass of RNA in the cell. Thus, nucleoli are characterized by extensive transcription of multiple rDNA loci by the dedicated polymerase, RNA polymerase (Pol) I. However, in addition to producing rRNAs, there is considerable additional transcription in nucleoli by RNA Pol II as well as Pol I, producing multiple noncoding (nc) and, in one instance, coding RNAs. In this review, we discuss important features of these transcripts, which often appear species-specific and reflect transcription antisense to pre-rRNA by Pol II and within the intergenic spacer regions on both strands by both Pol I and Pol II. We discuss how expression of these RNAs is regulated, their propensity to form cotranscriptional R loops, and how they modulate rRNA transcription, nucleolar structure, and cellular homeostasis more generally.


Asunto(s)
ARN Polimerasa II , Precursores del ARN , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , ADN Intergénico , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Homeostasis/genética , Sustancias Macromoleculares/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Transcripción Genética
3.
Nat Rev Mol Cell Biol ; 18(1): 18-30, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27677860

RESUMEN

Alternative polyadenylation (APA) is an RNA-processing mechanism that generates distinct 3' termini on mRNAs and other RNA polymerase II transcripts. It is widespread across all eukaryotic species and is recognized as a major mechanism of gene regulation. APA exhibits tissue specificity and is important for cell proliferation and differentiation. In this Review, we discuss the roles of APA in diverse cellular processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation. We also discuss the molecular mechanisms underlying APA, such as variation in the concentration of core processing factors and RNA-binding proteins, as well as transcription-based regulation.


Asunto(s)
Regiones no Traducidas 3' , Poliadenilación , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Transporte Activo de Núcleo Celular , Exones , Regulación de la Expresión Génica , Humanos , Precursores del ARN/genética , Estabilidad del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
4.
Genes Dev ; 35(23-24): 1579-1594, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34819354

RESUMEN

The nucleolus is an important cellular compartment in which ribosomal RNAs (rRNAs) are transcribed and where certain stress pathways that are crucial for cell growth are coordinated. Here we report novel functions of the DNA replication and repair factor replication protein A (RPA) in control of nucleolar homeostasis. We show that loss of the DNA:RNA helicase senataxin (SETX) promotes RPA nucleolar localization, and that this relocalization is dependent on the presence of R loops. Notably, this nucleolar RPA phenotype was also observed in the presence of camptothecin (CPT)-induced genotoxic stress, as well as in SETX-deficient AOA2 patient fibroblasts. Extending these results, we found that RPA is recruited to rDNA following CPT treatment, where RPA prevents R-loop-induced DNA double-strand breaks. Furthermore, we show that loss of RPA significantly decreased 47S pre-rRNA levels, which was accompanied by increased expression of both RNAP II-mediated "promoter and pre-rRNA antisense" RNA as well as RNAP I-transcribed intragenic spacer RNAs. Finally, and likely reflecting the above, we found that loss of RPA promoted nucleolar structural disorganization, characterized by the appearance of reduced size nucleoli. Our findings both indicate new roles for RPA in nucleoli through pre-rRNA transcriptional control and also emphasize that RPA function in nucleolar homeostasis is linked to R-loop resolution under both physiological and pathological conditions.


Asunto(s)
Estructuras R-Loop , Proteína de Replicación A , Nucléolo Celular/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Humanos , Enzimas Multifuncionales , ARN Helicasas/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Transcripción Genética
5.
Genes Dev ; 34(11-12): 785-805, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381627

RESUMEN

Dysregulation of the DNA/RNA-binding protein FUS causes certain subtypes of ALS/FTD by largely unknown mechanisms. Recent evidence has shown that FUS toxic gain of function due either to mutations or to increased expression can disrupt critical cellular processes, including mitochondrial functions. Here, we demonstrate that in human cells overexpressing wild-type FUS or expressing mutant derivatives, the protein associates with multiple mRNAs, and these are enriched in mRNAs encoding mitochondrial respiratory chain components. Notably, this sequestration leads to reduced levels of the encoded proteins, which is sufficient to bring about disorganized mitochondrial networks, reduced aerobic respiration and increased reactive oxygen species. We further show that mutant FUS associates with mitochondria and with mRNAs encoded by the mitochondrial genome. Importantly, similar results were also observed in fibroblasts derived from ALS patients with FUS mutations. Finally, we demonstrate that FUS loss of function does not underlie the observed mitochondrial dysfunction, and also provides a mechanism for the preferential sequestration of the respiratory chain complex mRNAs by FUS that does not involve sequence-specific binding. Together, our data reveal that respiratory chain complex mRNA sequestration underlies the mitochondrial defects characteristic of ALS/FTD and contributes to the FUS toxic gain of function linked to this disease spectrum.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Regulación de la Expresión Génica/genética , Mitocondrias/patología , ARN Mensajero/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Línea Celular , Respiración de la Célula/genética , Células Cultivadas , Transporte de Electrón/genética , Genoma Mitocondrial , Humanos , Mitocondrias/genética , Mutación , Agregación Patológica de Proteínas/genética , Unión Proteica/genética
6.
Mol Cell ; 76(1): 82-95.e7, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31474574

RESUMEN

SF3B1, which encodes an essential spliceosomal protein, is frequently mutated in myelodysplastic syndromes (MDS) and many cancers. However, the defect of mutant SF3B1 is unknown. Here, we analyzed RNA sequencing data from MDS patients and confirmed that SF3B1 mutants use aberrant 3' splice sites. To elucidate the underlying mechanism, we purified complexes containing either wild-type or the hotspot K700E mutant SF3B1 and found that levels of a poorly studied spliceosomal protein, SUGP1, were reduced in mutant spliceosomes. Strikingly, SUGP1 knockdown completely recapitulated the splicing errors, whereas SUGP1 overexpression drove the protein, which our data suggest plays an important role in branchsite recognition, into the mutant spliceosome and partially rescued splicing. Other hotspot SF3B1 mutants showed similar altered splicing and diminished interaction with SUGP1. Our study demonstrates that SUGP1 loss is a common defect of spliceosomes with disease-causing SF3B1 mutations and, because this defect can be rescued, suggests possibilities for therapeutic intervention.


Asunto(s)
Leucemia Eritroblástica Aguda/metabolismo , Mutación , Síndromes Mielodisplásicos/metabolismo , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Empalme del ARN , Empalmosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Células K562 , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Fenotipo , Fosfoproteínas/genética , Unión Proteica , Factores de Empalme de ARN/genética , Empalmosomas/genética , Empalmosomas/patología
7.
Proc Natl Acad Sci U S A ; 120(9): e2221109120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812203

RESUMEN

Certain long non-coding RNAs (lncRNAs) are known to contain small open reading frames that can be translated. Here we describe a much larger 25 kDa human protein, "Ribosomal IGS Encoded Protein" (RIEP), that remarkably is encoded by the well-characterized RNA polymerase (RNAP) II-transcribed nucleolar "promoter and pre-rRNA antisense" lncRNA (PAPAS). Strikingly, RIEP, which is conserved throughout primates but not found in other species, predominantly localizes to the nucleolus as well as mitochondria, but both exogenously expressed and endogenous RIEP increase in the nuclear and perinuclear regions upon heat shock (HS). RIEP associates specifically with the rDNA locus, increases levels of the RNA:DNA helicase Senataxin, and functions to sharply reduce DNA damage induced by heat shock. Proteomics analysis identified two mitochondrial proteins, C1QBP and CHCHD2, both known to have mitochondrial and nuclear functions, that we show interact directly, and relocalize following heat shock, with RIEP. Finally, it is especially notable that the rDNA sequences encoding RIEP are multifunctional, giving rise to an RNA that functions both as RIEP messenger RNA (mRNA) and as PAPAS lncRNA, as well as containing the promoter sequences responsible for rRNA synthesis by RNAP I. Our work has thus not only shown that a nucleolar "non-coding" RNA in fact encodes a protein, but also established a novel link between mitochondria and nucleoli that contributes to the cellular stress response.


Asunto(s)
ARN Largo no Codificante , Animales , Humanos , ARN Largo no Codificante/metabolismo , Transcripción Genética , ADN Ribosómico/genética , Nucléolo Celular/metabolismo , ARN Polimerasa I/metabolismo , ARN Polimerasa II/metabolismo , Proteínas Ribosómicas/metabolismo , ARN no Traducido/metabolismo , ARN Ribosómico/genética , Proteínas Portadoras/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
8.
Genes Dev ; 32(17-18): 1161-1174, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30115631

RESUMEN

Alternative splicing (AS) plays important roles in embryonic stem cell (ESC) differentiation. In this study, we first identified transcripts that display specific AS patterns in pluripotent human ESCs (hESCs) relative to differentiated cells. One of these encodes T-cell factor 3 (TCF3), a transcription factor that plays important roles in ESC differentiation. AS creates two TCF3 isoforms, E12 and E47, and we identified two related splicing factors, heterogeneous nuclear ribonucleoproteins (hnRNPs) H1 and F (hnRNP H/F), that regulate TCF3 splicing. We found that hnRNP H/F levels are high in hESCs, leading to high E12 expression, but decrease during differentiation, switching splicing to produce elevated E47 levels. Importantly, hnRNP H/F knockdown not only recapitulated the switch in TCF3 AS but also destabilized hESC colonies and induced differentiation. Providing an explanation for this, we show that expression of known TCF3 target E-cadherin, critical for maintaining ESC pluripotency, is repressed by E47 but not by E12.


Asunto(s)
Empalme Alternativo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cadherinas/metabolismo , Células Madre Embrionarias/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Antígenos CD , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cadherinas/genética , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/citología , Exones , Regulación de la Expresión Génica , Humanos , Precursores del ARN/química , ARN Mensajero/química , Secuencias Reguladoras de Ácido Ribonucleico
9.
Mol Cell ; 68(5): 913-925.e3, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29220656

RESUMEN

The RNA polymerase II largest subunit C-terminal domain consists of repeated YSPTSPS heptapeptides. The role of tyrosine-1 (Tyr1) remains incompletely understood, as, for example, mutating all Tyr1 residues to Phe (Y1F) is lethal in vertebrates but a related mutant has only a mild phenotype in S. pombe. Here we show that Y1F substitution in budding yeast resulted in a strong slow-growth phenotype. The Y1F strain was also hypersensitive to several different cellular stresses that involve MAP kinase signaling. These phenotypes were all linked to transcriptional changes, and we also identified genetic and biochemical interactions between Tyr1 and both transcription initiation and termination factors. Further studies uncovered defects related to MAP kinase I (Slt2) pathways, and we provide evidence that Slt2 phosphorylates Tyr1 in vitro and in vivo. Our study has thus identified Slt2 as a Tyr1 kinase, and in doing so provided links between stress response activation and Tyr1 phosphorylation.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Estrés Fisiológico , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Genotipo , Complejo Mediador/genética , Complejo Mediador/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Mutación , Fenotipo , Fosforilación , Dominios Proteicos , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Tiempo , Transducción Genética , Tirosina
10.
Proc Natl Acad Sci U S A ; 119(49): e2216712119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459648

RESUMEN

SF3B1 is the most frequently mutated spliceosomal gene in cancer. Several hotspot mutations are known to disrupt the interaction of SF3B1 with another splicing factor, SUGP1, resulting in the RNA missplicing that characterizes mutant SF3B1 cancers. Properties of SUGP1, especially the presence of a G-patch motif, a structure known to function by activating DEAH-box RNA helicases, suggest the requirement of such an enzyme in SUGP1 function in splicing. However, the identity of this putative helicase has remained an important unanswered question. Here, using a variety of protein-protein interaction assays, we identify DHX15 as the critical helicase. We further show that depletion of DHX15 or expression of any of several DHX15 mutants, including one implicated in acute myeloid leukemia, partially recapitulates the splicing defects of mutant SF3B1. Moreover, a DHX15-SUGP1 G-patch fusion protein is able to incorporate into the spliceosome to rescue the splicing defects of mutant SF3B1. We also present the crystal structure of the human DHX15-SUGP1 G-patch complex, which reveals the molecular basis of their direct interaction. Our data thus demonstrate that DHX15 is the RNA helicase that functions with SUGP1 and additionally provide important insight into how mutant SF3B1 disrupts splicing in cancer.


Asunto(s)
Neoplasias , ARN Helicasas , Factores de Empalme de ARN , Empalme del ARN , Humanos , ADN Helicasas , Genes Reguladores , Fosfoproteínas , ARN Helicasas/genética , Empalme del ARN/genética , Factores de Empalme de ARN/genética , Empalmosomas/genética
11.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34930825

RESUMEN

SF3B1 is the most frequently mutated RNA splicing factor in cancer, including in ∼25% of myelodysplastic syndromes (MDS) patients. SF3B1-mutated MDS, which is strongly associated with ringed sideroblast morphology, is characterized by ineffective erythropoiesis, leading to severe, often fatal anemia. However, functional evidence linking SF3B1 mutations to the anemia described in MDS patients harboring this genetic aberration is weak, and the underlying mechanism is completely unknown. Using isogenic SF3B1 WT and mutant cell lines, normal human CD34 cells, and MDS patient cells, we define a previously unrecognized role of the kinase MAP3K7, encoded by a known mutant SF3B1-targeted transcript, in controlling proper terminal erythroid differentiation, and show how MAP3K7 missplicing leads to the anemia characteristic of SF3B1-mutated MDS, although not to ringed sideroblast formation. We found that p38 MAPK is deactivated in SF3B1 mutant isogenic and patient cells and that MAP3K7 is an upstream positive effector of p38 MAPK. We demonstrate that disruption of this MAP3K7-p38 MAPK pathway leads to premature down-regulation of GATA1, a master regulator of erythroid differentiation, and that this is sufficient to trigger accelerated differentiation, erythroid hyperplasia, and ultimately apoptosis. Our findings thus define the mechanism leading to the severe anemia found in MDS patients harboring SF3B1 mutations.


Asunto(s)
Anemia/metabolismo , Eritropoyesis , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Mutación , Síndromes Mielodisplásicos/metabolismo , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Anemia/genética , Anemia/patología , Diferenciación Celular/genética , Células Eritroides/metabolismo , Células Eritroides/patología , Humanos , Células K562 , Quinasas Quinasa Quinasa PAM/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Fosfoproteínas/genética , Factores de Empalme de ARN/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Genes Dev ; 31(15): 1509-1528, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28912172

RESUMEN

Neurodegeneration is a leading cause of death in the developed world and a natural, albeit unfortunate, consequence of longer-lived populations. Despite great demand for therapeutic intervention, it is often the case that these diseases are insufficiently understood at the basic molecular level. What little is known has prompted much hopeful speculation about a generalized mechanistic thread that ties these disparate conditions together at the subcellular level and can be exploited for broad curative benefit. In this review, we discuss a prominent theory supported by genetic and pathological changes in an array of neurodegenerative diseases: that neurons are particularly vulnerable to disruption of RNA-binding protein dosage and dynamics. Here we synthesize the progress made at the clinical, genetic, and biophysical levels and conclude that this perspective offers the most parsimonious explanation for these mysterious diseases. Where appropriate, we highlight the reciprocal benefits of cross-disciplinary collaboration between disease specialists and RNA biologists as we envision a future in which neurodegeneration declines and our understanding of the broad importance of RNA processing deepens.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Proteínas de Unión al ARN/metabolismo , Envejecimiento , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Repeticiones de Microsatélite/genética , Enfermedades Neurodegenerativas/genética , Neuronas/metabolismo , Orgánulos/metabolismo , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/genética
13.
Genes Dev ; 31(12): 1257-1271, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28733371

RESUMEN

Many long noncoding RNAs (lncRNAs) are unstable and rapidly degraded in the nucleus by the nuclear exosome. An exosome adaptor complex called NEXT (nuclear exosome targeting) functions to facilitate turnover of some of these lncRNAs. Here we show that knockdown of one NEXT subunit, Mtr4, but neither of the other two subunits, resulted in accumulation of two types of lncRNAs: prematurely terminated RNAs (ptRNAs) and upstream antisense RNAs (uaRNAs). This suggested a NEXT-independent Mtr4 function, and, consistent with this, we isolated a distinct complex containing Mtr4 and the zinc finger protein ZFC3H1. Strikingly, knockdown of either protein not only increased pt/uaRNA levels but also led to their accumulation in the cytoplasm. Furthermore, all pt/uaRNAs examined associated with active ribosomes, but, paradoxically, this correlated with a global reduction in heavy polysomes and overall repression of translation. Our findings highlight a critical role for Mtr4/ZFC3H1 in nuclear surveillance of naturally unstable lncRNAs to prevent their accumulation, transport to the cytoplasm, and resultant disruption of protein synthesis.


Asunto(s)
Transporte Activo de Núcleo Celular/genética , Citoplasma/metabolismo , Regulación de la Expresión Génica/genética , ARN Helicasas/metabolismo , ARN Nuclear/metabolismo , Factores de Transcripción/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , ARN Helicasas/genética , Estabilidad del ARN , Factores de Transcripción/genética
14.
Genome Res ; 30(12): 1705-1715, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33055097

RESUMEN

The GGGGCC hexanucleotide expansion in C9orf72 (C9) is the most frequent known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), yet a clear understanding of how C9 fits into the broader context of ALS/FTD pathology has remained lacking. The repetitive RNA derived from the C9 repeat is known to sequester hnRNPH, a splicing regulator, into insoluble aggregates, resulting in aberrant alternative splicing. Furthermore, hnRNPH insolubility and altered splicing of a robust set of targets have been observed to correlate in C9 and sporadic ALS/FTD patients alike, suggesting that changes along this axis are a core feature of disease pathogenesis. Here, we characterize previously uncategorized RNA splicing defects involving widespread intron retention affecting almost 2000 transcripts in C9ALS/FTD brains exhibiting a high amount of sequestered, insoluble hnRNPH. These intron retention events appear not to alter overall expression levels of the affected transcripts but rather the protein-coding regions. These retained introns affect transcripts in multiple cellular pathways predicted to be involved in C9 as well as sporadic ALS/FTD etiology, including the proteasomal and autophagy systems. The retained intron pre-mRNAs display a number of characteristics, including enrichment of hnRNPH-bound splicing enhancer motifs and a propensity for G-quadruplex (G-Q) formation, linking the defective splicing directly to high amounts of sequestered hnRNPH. Together, our results reveal previously undetected splicing defects in high insoluble hnRNPH-associated C9ALS brains, suggesting a feedback between effective RNA-binding protein dosage and protein quality control in C9, and perhaps all, ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Redes Reguladoras de Genes , Análisis de Secuencia de ARN/métodos , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Proteína C9orf72/metabolismo , Estudios de Casos y Controles , Femenino , Demencia Frontotemporal/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Intrones , Masculino , Persona de Mediana Edad , Proteostasis , Empalme del ARN
15.
Proc Natl Acad Sci U S A ; 117(19): 10305-10312, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32332164

RESUMEN

The gene encoding the core spliceosomal protein SF3B1 is the most frequently mutated gene encoding a splicing factor in a variety of hematologic malignancies and solid tumors. SF3B1 mutations induce use of cryptic 3' splice sites (3'ss), and these splicing errors contribute to tumorigenesis. However, it is unclear how widespread this type of cryptic 3'ss usage is in cancers and what is the full spectrum of genetic mutations that cause such missplicing. To address this issue, we performed an unbiased pan-cancer analysis to identify genetic alterations that lead to the same aberrant splicing as observed with SF3B1 mutations. This analysis identified multiple mutations in another spliceosomal gene, SUGP1, that correlated with significant usage of cryptic 3'ss known to be utilized in mutant SF3B1 expressing cells. Remarkably, this is consistent with recent biochemical studies that identified a defective interaction between mutant SF3B1 and SUGP1 as the molecular defect responsible for cryptic 3'ss usage. Experimental validation revealed that five different SUGP1 mutations completely or partially recapitulated the 3'ss defects. Our analysis suggests that SUGP1 mutations in cancers can induce missplicing identical or similar to that observed in mutant SF3B1 cancers.


Asunto(s)
Biología Computacional/métodos , Mutación , Neoplasias/genética , Fosfoproteínas/genética , Sitios de Empalme de ARN , Factores de Empalme de ARN/genética , Empalme del ARN , Análisis Mutacional de ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología , Empalmosomas
16.
Genes Dev ; 29(16): 1696-706, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26251528

RESUMEN

Amyotrophic lateral sclerosis (ALS) is caused by mutations in a number of genes, including the gene encoding the RNA/DNA-binding protein translocated in liposarcoma or fused in sarcoma (TLS/FUS or FUS). Previously, we identified a number of FUS target genes, among them MECP2. To investigate how ALS mutations in FUS might impact target gene expression, we examined the effects of several FUS derivatives harboring ALS mutations, such as R521C (FUS(C)), on MECP2 expression in transfected human U87 cells. Strikingly, FUS(C) and other mutants not only altered MECP2 alternative splicing but also markedly increased mRNA abundance, which we show resulted from sharply elevated stability. Paradoxically, however, MeCP2 protein levels were significantly reduced in cells expressing ALS mutant derivatives. Providing a parsimonious explanation for these results, biochemical fractionation and in vivo localization studies revealed that MECP2 mRNA colocalized with cytoplasmic FUS(C) in insoluble aggregates, which are characteristic of ALS mutant proteins. Together, our results establish that ALS mutations in FUS can strongly impact target gene expression, reflecting a dominant effect of FUS-containing aggregates.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Regulación de la Expresión Génica/genética , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Línea Celular Tumoral , Citoplasma/metabolismo , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Mutación , Transporte de Proteínas , Empalme del ARN/genética , Estabilidad del ARN/genética , ARN Mensajero/metabolismo
17.
Genes Dev ; 29(9): 889-97, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25934501

RESUMEN

The key RNA sequence elements and protein factors necessary for 3' processing of polyadenylated mRNA precursors are well known. Recent studies, however, have significantly reshaped current models for the protein-RNA interactions involved in poly(A) site recognition, painting a picture more complex than previously envisioned and also providing new insights into regulation of this important step in gene expression. Here we review the recent advances in this area and provide a perspective for future studies.


Asunto(s)
Regulación de la Expresión Génica , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Secuencias de Aminoácidos , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Secuencia Conservada , Poliadenilación , Unión Proteica , Precursores del ARN/genética
18.
Genes Dev ; 29(12): 1298-315, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26080815

RESUMEN

Mutant p53 impacts the expression of numerous genes at the level of transcription to mediate oncogenesis. We identified vascular endothelial growth factor receptor 2 (VEGFR2), the primary functional VEGF receptor that mediates endothelial cell vascularization, as a mutant p53 transcriptional target in multiple breast cancer cell lines. Up-regulation of VEGFR2 mediates the role of mutant p53 in increasing cellular growth in two-dimensional (2D) and three-dimensional (3D) culture conditions. Mutant p53 binds near the VEGFR2 promoter transcriptional start site and plays a role in maintaining an open conformation at that location. Relatedly, mutant p53 interacts with the SWI/SNF complex, which is required for remodeling the VEGFR2 promoter. By both querying individual genes regulated by mutant p53 and performing RNA sequencing, the results indicate that >40% of all mutant p53-regulated gene expression is mediated by SWI/SNF. We surmise that mutant p53 impacts transcription of VEGFR2 as well as myriad other genes by promoter remodeling through interaction with and likely regulation of the SWI/SNF chromatin remodeling complex. Therefore, not only might mutant p53-expressing tumors be susceptible to anti VEGF therapies, impacting SWI/SNF tumor suppressor function in mutant p53 tumors may also have therapeutic potential.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Ensamble y Desensamble de Cromatina/genética , Regulación Neoplásica de la Expresión Génica , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Células HT29 , Humanos , Células MCF-7 , Mutación/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Conformación Proteica , Factores de Transcripción/metabolismo
19.
Genes Dev ; 28(21): 2370-80, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25301780

RESUMEN

AAUAAA is the most highly conserved motif in eukaryotic mRNA polyadenylation sites and, in mammals, is specifically recognized by the multisubunit CPSF (cleavage and polyadenylation specificity factor) complex. Despite its critical functions in mRNA 3' end formation, the molecular basis for CPSF-AAUAAA interaction remains poorly defined. The CPSF subunit CPSF160 has been implicated in AAUAAA recognition, but direct evidence has been lacking. Using in vitro and in vivo assays, we unexpectedly found that CPSF subunits CPSF30 and Wdr33 directly contact AAUAAA. Importantly, the CPSF30-RNA interaction is essential for mRNA 3' processing and is primarily mediated by its zinc fingers 2 and 3, which are specifically targeted by the influenza protein NS1A to suppress host mRNA 3' processing. Our data suggest that AAUAAA recognition in mammalian mRNA 3' processing is more complex than previously thought and involves multiple protein-RNA interactions.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento de Término de ARN 3'/fisiología , ARN Mensajero/metabolismo , Secuencias de Aminoácidos , Perfilación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Poliadenilación , Unión Proteica , Estructura Terciaria de Proteína
20.
Genes Dev ; 28(20): 2248-60, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25319826

RESUMEN

Polyadenylation of mRNA precursors is mediated by a large multisubunit protein complex. Here we show that RBBP6 (retinoblastoma-binding protein 6), identified initially as an Rb- and p53-binding protein, is a component of this complex and functions in 3' processing in vitro and in vivo. RBBP6 associates with other core factors, and this interaction is mediated by an unusual ubiquitin-like domain, DWNN ("domain with no name"), that is required for 3' processing activity. The DWNN is also expressed, via alternative RNA processing, as a small single-domain protein (isoform 3 [iso3]). Importantly, we show that iso3, known to be down-regulated in several cancers, competes with RBBP6 for binding to the core machinery, thereby inhibiting 3' processing. Genome-wide analyses following RBBP6 knockdown revealed decreased transcript levels, especially of mRNAs with AU-rich 3' untranslated regions (UTRs) such as c-Fos and c-Jun, and increased usage of distal poly(A) sites. Our results implicate RBBP6 and iso3 as novel regulators of 3' processing, especially of RNAs with AU-rich 3' UTRs.


Asunto(s)
Regiones no Traducidas 3'/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , ARN Mensajero/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Poliadenilación/genética , Unión Proteica , Isoformas de Proteínas , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA