Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178344

RESUMEN

Sickle cell disease (SCD) is canonically characterized by reduced red blood cell (RBC) deformability leading to microvascular obstruction and inflammation. While the biophysical properties of sickle RBCs are known to influence SCD vasculopathy, the contribution of poor RBC deformability to endothelial dysfunction has yet to be fully explored. Leveraging interrelated in vitro and in silico approaches, we introduce a new paradigm of SCD vasculopathy in which poorly deformable sickle RBCs directly cause endothelial dysfunction via mechanotransduction, where endothelial cells sense and pathophysiologically respond to aberrant physical forces independently of microvascular obstruction, adhesion, or hemolysis. We demonstrate that perfusion of sickle RBCs or pharmacologically-dehydrated healthy RBCs into small venule-sized "endothelialized" microfluidics leads to pathologic physical interactions with endothelial cells that directly induce inflammatory pathways. Using a combination of computational simulations and large venule-sized endothelialized microfluidics, we observed that perfusion of heterogeneous sickle RBC subpopulations of varying deformability, as well as suspensions of dehydrated normal RBCs admixed with normal RBCs leads to aberrant margination of the less-deformable RBC subpopulations towards the vessel walls, causing localized, increased shear stress. Increased wall stress is dependent on the degree of subpopulation heterogeneity and oxygen tension and leads to inflammatory endothelial gene expression via mechanotransductive pathways. Our multifaceted approach demonstrates that the presence of sickle RBCs with reduced deformability leads directly to pathological physical (i.e., direct collisions and/or compressive forces) and shear-mediated interactions with endothelial cells and induces an inflammatory response, thereby elucidating the ubiquity of vascular dysfunction in SCD.

2.
BMC Med ; 21(1): 109, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959646

RESUMEN

With today's pace of rapid technological advancement, many patient issues in modern medicine are increasingly solvable by mobile app solutions, which also have the potential to transform how clinical research is conducted. However, many critical challenges in the app development process impede bringing these translational technologies to patients, caused in large part by the lack of knowledge among clinicians and biomedical researchers of "what it takes" to design, develop, and maintain a successful medical app. Indeed, problems requiring mobile app solutions are often nuanced, requiring more than just clinical expertise, and issues such as the cost and effort required to develop and maintain a well-designed, sustainable, and scalable mobile app are frequently underestimated. To bridge this skill set gap, we established an academic unit of designers, software engineers, and scientists that leverage human-centered design methodologies and multi-disciplinary collaboration to develop clinically viable smartphone apps. In this report, we discuss major misconceptions clinicians and biomedical researchers often hold regarding medical app development, the steps we took to establish this unit to address these issues and the best practices and lessons learned from successfully ideating, developing, and launching medical apps. Overall, this report will serve as a blueprint for clinicians and biomedical researchers looking to better benefit their patients or colleagues via medical mobile apps.


Asunto(s)
Aplicaciones Móviles , Médicos , Humanos , Encuestas y Cuestionarios , Pacientes
3.
Pediatr Blood Cancer ; 70(10): e30537, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37415085

RESUMEN

BACKGROUND: At least 5%-10% of malignancies occur secondary to an underlying cancer predisposition syndrome (CPS). For these families, cancer surveillance is recommended with the goal of identifying malignancy earlier, in a presumably more curable form. Surveillance protocols, including imaging studies, bloodwork, and procedures, can be complex and differ based on age, gender, and syndrome, which adversely affect adherence. Mobile health (mHealth) applications (apps) have been utilized in oncology and could help to facilitate adherence to cancer surveillance protocols. METHODS: Applying a user-centered mobile app design approach, patients with a CPS and/or primary caregivers were interviewed to identify current methods for care management and barriers to compliance with recommended surveillance protocols. Broad themes from these interviews informed the design of the mobile app, HomeTown, which was subsequently evaluated by usability experts. The design was then converted into software code in phases, evaluated by patients and caregivers in an iterative fashion. User population growth and app usage data were assessed. RESULTS: Common themes identified included general distress surrounding surveillance protocol scheduling and results, difficulty remembering medical history, assembling a care team, and seeking resources for self-education. These themes were translated into specific functional app features, including push reminders, syndrome-specific surveillance recommendations, ability to annotate visits and results, storage of medical histories, and links to reliable educational resources. CONCLUSIONS: Families with CPS demonstrate a desire for mHealth tools to facilitate adherence to cancer surveillance protocols, reduce related distress, relay medical information, and provide educational resources. HomeTown may be a useful tool for engaging this patient population.


Asunto(s)
Aplicaciones Móviles , Neoplasias , Telemedicina , Humanos , Síndrome , Oncología Médica , Susceptibilidad a Enfermedades
4.
J Biol Chem ; 295(46): 15438-15453, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32883809

RESUMEN

Widespread testing for the presence of the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in individuals remains vital for controlling the COVID-19 pandemic prior to the advent of an effective treatment. Challenges in testing can be traced to an initial shortage of supplies, expertise, and/or instrumentation necessary to detect the virus by quantitative RT-PCR (RT-qPCR), the most robust, sensitive, and specific assay currently available. Here we show that academic biochemistry and molecular biology laboratories equipped with appropriate expertise and infrastructure can replicate commercially available SARS-CoV-2 RT-qPCR test kits and backfill pipeline shortages. The Georgia Tech COVID-19 Test Kit Support Group, composed of faculty, staff, and trainees across the biotechnology quad at Georgia Institute of Technology, synthesized multiplexed primers and probes and formulated a master mix composed of enzymes and proteins produced in-house. Our in-house kit compares favorably with a commercial product used for diagnostic testing. We also developed an environmental testing protocol to readily monitor surfaces for the presence of SARS-CoV-2. Our blueprint should be readily reproducible by research teams at other institutions, and our protocols may be modified and adapted to enable SARS-CoV-2 detection in more resource-limited settings.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Juego de Reactivos para Diagnóstico/economía , SARS-CoV-2/genética , Transferencia de Tecnología , Universidades/economía , Biotecnología/métodos , COVID-19/virología , Humanos , Juego de Reactivos para Diagnóstico/provisión & distribución , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/aislamiento & purificación
5.
Blood ; 130(24): 2654-2663, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-28978568

RESUMEN

Abnormal sickle red blood cell (sRBC) biomechanics, including pathological deformability and adhesion, correlate with clinical severity in sickle cell disease (SCD). Clinical intravenous fluids (IVFs) of various tonicities are often used during treatment of vaso-occlusive pain episodes (VOE), the major cause of morbidity in SCD. However, evidence-based guidelines are lacking, and there is no consensus regarding which IVFs to use during VOE. Further, it is unknown how altering extracellular fluid tonicity with IVFs affects sRBC biomechanics in the microcirculation, where vaso-occlusion takes place. Here, we report how altering extracellular fluid tonicity with admixtures of clinical IVFs affects sRBC biomechanical properties by leveraging novel in vitro microfluidic models of the microcirculation, including 1 capable of deoxygenating the sRBC environment to monitor changes in microchannel occlusion risk and an "endothelialized" microvascular model that measures alterations in sRBC/endothelium adhesion under postcapillary venular conditions. Admixtures with higher tonicities (sodium = 141 mEq/L) affected sRBC biomechanics by decreasing sRBC deformability, increasing sRBC occlusion under normoxic and hypoxic conditions, and increasing sRBC adhesion in our microfluidic human microvasculature models. Admixtures with excessive hypotonicity (sodium = 103 mEq/L), in contrast, decreased sRBC adhesion, but overswelling prolonged sRBC transit times in capillary-sized microchannels. Admixtures with intermediate tonicities (sodium = 111-122 mEq/L) resulted in optimal changes in sRBC biomechanics, thereby reducing the risk for vaso-occlusion in our models. These results have significant translational implications for patients with SCD and warrant a large-scale prospective clinical study addressing optimal IVF management during VOE in SCD.


Asunto(s)
Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/fisiopatología , Deformación Eritrocítica/fisiología , Líquido Extracelular/fisiología , Fenómenos Biomecánicos , Adhesión Celular/fisiología , Células Cultivadas , Eritrocitos Anormales/fisiología , Líquido Extracelular/química , Hemorreología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Concentración Osmolar
6.
Am J Hematol ; 94(2): 189-199, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30417938

RESUMEN

Investigating individual red blood cells (RBCs) is critical to understanding hematologic diseases, as pathology often originates at the single-cell level. Many RBC disorders manifest in altered biophysical properties, such as deformability of RBCs. Due to limitations in current biophysical assays, there exists a need for high-throughput analysis of RBC deformability with single-cell resolution. To that end, we present a method that pairs a simple in vitro artificial microvasculature network system with an innovative MATLAB-based automated particle tracking program, allowing for high-throughput, single-cell deformability index (sDI) measurements of entire RBC populations. We apply our technology to quantify the sDI of RBCs from healthy volunteers, Sickle cell disease (SCD) patients, a transfusion-dependent beta thalassemia major patient, and in stored packed RBCs (pRBCs) that undergo storage lesion over 4 weeks. Moreover, our system can also measure cell size for each RBC, thereby enabling 2D analysis of cell deformability vs cell size with single cell resolution akin to flow cytometry. Our results demonstrate the clear existence of distinct biophysical RBC subpopulations with high interpatient variability in SCD as indicated by large magnitude skewness and kurtosis values of distribution, the "shifting" of sDI vs RBC size curves over transfusion cycles in beta thalassemia, and the appearance of low sDI RBC subpopulations within 4 days of pRBC storage. Overall, our system offers an inexpensive, convenient, and high-throughput method to gauge single RBC deformability and size for any RBC population and has the potential to aid in disease monitoring and transfusion guidelines for various RBC disorders.


Asunto(s)
Deformación Eritrocítica , Eritrocitos/patología , Enfermedades Hematológicas/sangre , Microfluídica/métodos , Anemia de Células Falciformes/sangre , Conservación de la Sangre , Voluntarios Sanos , Humanos , Métodos , Análisis de la Célula Individual/métodos , Talasemia beta/sangre
7.
Proc Natl Acad Sci U S A ; 113(8): 1987-92, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26858400

RESUMEN

Leukocytes normally marginate toward the vascular wall in large vessels and within the microvasculature. Reversal of this process, leukocyte demargination, leads to substantial increases in the clinical white blood cell and granulocyte count and is a well-documented effect of glucocorticoid and catecholamine hormones, although the underlying mechanisms remain unclear. Here we show that alterations in granulocyte mechanical properties are the driving force behind glucocorticoid- and catecholamine-induced demargination. First, we found that the proportions of granulocytes from healthy human subjects that traversed and demarginated from microfluidic models of capillary beds and veins, respectively, increased after the subjects ingested glucocorticoids. Also, we show that glucocorticoid and catecholamine exposure reorganizes cellular cortical actin, significantly reducing granulocyte stiffness, as measured with atomic force microscopy. Furthermore, using simple kinetic theory computational modeling, we found that this reduction in stiffness alone is sufficient to cause granulocyte demargination. Taken together, our findings reveal a biomechanical answer to an old hematologic question regarding how glucocorticoids and catecholamines cause leukocyte demargination. In addition, in a broader sense, we have discovered a temporally and energetically efficient mechanism in which the innate immune system can simply alter leukocyte stiffness to fine tune margination/demargination and therefore leukocyte trafficking in general. These observations have broad clinically relevant implications for the inflammatory process overall as well as hematopoietic stem cell mobilization and homing.


Asunto(s)
Movimiento Celular , Granulocitos , Dispositivos Laboratorio en un Chip , Modelos Cardiovasculares , Catecolaminas/farmacología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Femenino , Glucocorticoides/farmacología , Granulocitos/citología , Granulocitos/metabolismo , Humanos , Recuento de Leucocitos/instrumentación , Recuento de Leucocitos/métodos , Masculino
8.
Biophys J ; 115(2): 209-216, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29650368

RESUMEN

Nanoparticles used in cellular applications encounter free serum proteins that adsorb onto the surface of the nanoparticle, forming a protein corona. This protein layer controls the interaction of nanoparticles with cells. For nanomedicine applications, it is important to consider how intravenous injection and the subsequent shear flow will affect the protein corona. Our goal was to determine if shear flow changed the composition of the protein corona and if these changes affected cellular binding. Colorimetric assays of protein concentration and gel electrophoresis demonstrate that polystyrene nanoparticles subjected to flow have a greater concentration of serum proteins adsorbed on the surface, especially plasminogen. Plasminogen, in the absence of nanoparticles, undergoes changes in structure in response to flow, characterized by fluorescence and circular dichroism spectroscopy. The protein-nanoparticle complexes formed from fetal bovine serum after flow had decreased cellular binding, as measured with flow cytometry. In addition to the relevance for nanomedicine, these results also highlight the technical challenges of protein corona studies. The composition of the protein corona was highly dependent on the initial mixing step: rocking, vortexing, or flow. Overall, these results reaffirm the importance of the protein corona in nanoparticle-cell interactions and point toward the challenges of predicting corona composition based on nanoparticle properties.


Asunto(s)
Hidrodinámica , Corona de Proteínas/química , Adsorción , Animales , Bovinos , Células HeLa , Humanos , Nanopartículas/química , Plasminógeno/química , Plasminógeno/metabolismo , Poliestirenos/química
9.
Nat Mater ; 16(2): 230-235, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27723740

RESUMEN

Haemostasis occurs at sites of vascular injury, where flowing blood forms a clot, a dynamic and heterogeneous fibrin-based biomaterial. Paramount in the clot's capability to stem haemorrhage are its changing mechanical properties, the major drivers of which are the contractile forces exerted by platelets against the fibrin scaffold. However, how platelets transduce microenvironmental cues to mediate contraction and alter clot mechanics is unknown. This is clinically relevant, as overly softened and stiffened clots are associated with bleeding and thrombotic disorders. Here, we report a high-throughput hydrogel-based platelet-contraction cytometer that quantifies single-platelet contraction forces in different clot microenvironments. We also show that platelets, via the Rho/ROCK pathway, synergistically couple mechanical and biochemical inputs to mediate contraction. Moreover, highly contractile platelet subpopulations present in healthy controls are conspicuously absent in a subset of patients with undiagnosed bleeding disorders, and therefore may function as a clinical diagnostic biophysical biomarker.


Asunto(s)
Coagulación Sanguínea/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Plaquetas/fisiología , Citometría de Flujo/métodos , Mecanotransducción Celular/fisiología , Activación Plaquetaria/fisiología , Adhesividad Plaquetaria/fisiología , Células Cultivadas , Módulo de Elasticidad/fisiología , Dureza/fisiología , Humanos , Nanopartículas/química
10.
Proc Natl Acad Sci U S A ; 111(40): 14430-5, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246564

RESUMEN

As platelets aggregate and activate at the site of vascular injury to stem bleeding, they are subjected to a myriad of biochemical and biophysical signals and cues. As clot formation ensues, platelets interact with polymerizing fibrin scaffolds, exposing platelets to a large range of mechanical microenvironments. Here, we show for the first time (to our knowledge) that platelets, which are anucleate cellular fragments, sense microenvironmental mechanical properties, such as substrate stiffness, and transduce those cues into differential biological signals. Specifically, as platelets mechanosense the stiffness of the underlying fibrin/fibrinogen substrate, increasing substrate stiffness leads to increased platelet adhesion and spreading. Importantly, adhesion on stiffer substrates also leads to higher levels of platelet activation, as measured by integrin αIIbß3 activation, α-granule secretion, and procoagulant activity. Mechanistically, we determined that Rac1 and actomyosin activity mediate substrate stiffness-dependent platelet adhesion, spreading, and activation to different degrees. This capability of platelets to mechanosense microenvironmental cues in a growing thrombus or hemostatic plug and then mechanotransduce those cues into differential levels of platelet adhesion, spreading, and activation provides biophysical insight into the underlying mechanisms of platelet aggregation and platelet activation heterogeneity during thrombus formation.


Asunto(s)
Coagulación Sanguínea/fisiología , Plaquetas/citología , Movimiento Celular/fisiología , Mecanotransducción Celular/fisiología , Activación Plaquetaria/fisiología , Adhesividad Plaquetaria/fisiología , Resinas Acrílicas/metabolismo , Plaquetas/metabolismo , Microambiente Celular/fisiología , Fibrina/metabolismo , Fibrinógeno/metabolismo , Humanos , Proteínas Inmovilizadas/metabolismo , Microscopía Confocal , Selectina-P/metabolismo , Fosfatidilserinas/metabolismo , Agregación Plaquetaria/fisiología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Estrés Mecánico , Trombosis/fisiopatología , Proteína de Unión al GTP rac1/metabolismo
11.
Am J Hematol ; 96(2): 174-178, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33576528
12.
J Cell Mol Med ; 17(5): 579-96, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23490277

RESUMEN

Although the processes of haemostasis and thrombosis have been studied extensively in the past several decades, much of the effort has been spent characterizing the biological and biochemical aspects of clotting. More recently, researchers have discovered that the function and physiology of blood cells and plasma proteins relevant in haematologic processes are mechanically, as well as biologically, regulated. This is not entirely surprising considering the extremely dynamic fluidic environment that these blood components exist in. Other cells in the body such as fibroblasts and endothelial cells have been found to biologically respond to their physical and mechanical environments, affecting aspects of cellular physiology as diverse as cytoskeletal architecture to gene expression to alterations of vital signalling pathways. In the circulation, blood cells and plasma proteins are constantly exposed to forces while they, in turn, also exert forces to regulate clot formation. These mechanical factors lead to biochemical and biomechanical changes on the macro- to molecular scale. Likewise, biochemical and biomechanical alterations in the microenvironment can ultimately impact the mechanical regulation of clot formation. The ways in which these factors all balance each other can be the difference between haemostasis and thrombosis. Here, we review how the biomechanics of blood cells intimately interact with the cellular and molecular biology to regulate haemostasis and thrombosis in the context of health and disease from the macro- to molecular scale. We will also show how these biomechanical forces in the context of haemostasis and thrombosis have been replicated or measured in vitro.


Asunto(s)
Salud , Hemostasis , Trombosis/fisiopatología , Animales , Fenómenos Biomecánicos , Eritrocitos/metabolismo , Humanos , Trombosis/sangre
13.
Sci Adv ; 9(14): eade4962, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37027461

RESUMEN

Engineering plays a critical role in the development of medical devices, and this has been magnified since 2020 as severe acute respiratory syndrome coronavirus 2 swept over the globe. In response to the coronavirus disease 2019, the National Institutes of Health launched the Rapid Acceleration of Diagnostics (RADx) initiative to help meet the testing needs of the United States and effectively manage the pandemic. As the Engineering and Human Factors team for the RADx Tech Test Verification Core, we directly assessed more than 30 technologies that ultimately contributed to an increase of the country's total testing capacity by 1.7 billion tests to date. In this review, we present central lessons learned from this "apples-to-apples" comparison of novel, rapidly developed diagnostic devices. Overall, the evaluation framework and lessons learned presented in this review may serve as a blueprint for engineers developing point-of-care diagnostics, leaving us better prepared to respond to the next global public health crisis rapidly and effectively.


Asunto(s)
COVID-19 , Humanos , Estados Unidos , COVID-19/diagnóstico , COVID-19/epidemiología , Técnicas de Laboratorio Clínico , SARS-CoV-2 , Prueba de COVID-19 , Pruebas en el Punto de Atención
14.
Nat Commun ; 14(1): 5022, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596311

RESUMEN

While microscopy-based cellular assays, including microfluidics, have significantly advanced over the last several decades, there has not been concurrent development of widely-accessible techniques to analyze time-dependent microscopy data incorporating phenomena such as fluid flow and dynamic cell adhesion. As such, experimentalists typically rely on error-prone and time-consuming manual analysis, resulting in lost resolution and missed opportunities for innovative metrics. We present a user-adaptable toolkit packaged into the open-source, standalone Interactive Cellular assay Labeled Observation and Tracking Software (iCLOTS). We benchmark cell adhesion, single-cell tracking, velocity profile, and multiscale microfluidic-centric applications with blood samples, the prototypical biofluid specimen. Moreover, machine learning algorithms characterize previously imperceptible data groupings from numerical outputs. Free to download/use, iCLOTS addresses a need for a field stymied by a lack of analytical tools for innovative, physiologically-relevant assays of any design, democratizing use of well-validated algorithms for all end-user biomedical researchers who would benefit from advanced computational methods.


Asunto(s)
Inteligencia Artificial , Microfluídica , Microscopía , Programas Informáticos , Células Sanguíneas
15.
Cell Rep Methods ; 2(5): 100222, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35527805

RESUMEN

During the COVID-19 pandemic, the development of point-of-care (POC) diagnostic testing accelerated in an unparalleled fashion. As a result, there has been an increased need for accurate, robust, and easy-to-use POC testing in a variety of non-traditional settings (i.e., pharmacies, drive-thru sites, schools). While stakeholders often express the desire for POC technologies that are "as simple as digital pregnancy tests," there is little discussion of what this means in regards to device design, development, and assessment. The design of POC technologies and systems should take into account the capabilities and limitations of the users and their environments. Such "human factors" are important tenets that can help technology developers create POC technologies that are effective for end-users in a multitude of settings. Here, we review the core principles of human factors and discuss lessons learned during the evaluation process of SARS-CoV-2 POC testing.


Asunto(s)
COVID-19 , Femenino , Humanos , COVID-19/diagnóstico , Pandemias , SARS-CoV-2/genética , Pruebas en el Punto de Atención , Sistemas de Atención de Punto
16.
medRxiv ; 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32766604

RESUMEN

Widespread testing for the presence of the novel coronavirus SARS-CoV-2 in individuals remains vital for controlling the COVID-19 pandemic prior to the advent of an effective treatment. Challenges in testing can be traced to an initial shortage of supplies, expertise and/or instrumentation necessary to detect the virus by quantitative reverse transcription polymerase chain reaction (RT-qPCR), the most robust, sensitive, and specific assay currently available. Here we show that academic biochemistry and molecular biology laboratories equipped with appropriate expertise and infrastructure can replicate commercially available SARS-CoV-2 RT-qPCR test kits and backfill pipeline shortages. The Georgia Tech COVID-19 Test Kit Support Group, composed of faculty, staff, and trainees across the biotechnology quad at Georgia Institute of Technology, synthesized multiplexed primers and probes and formulated a master mix composed of enzymes and proteins produced in-house. Our in-house kit compares favorably to a commercial product used for diagnostic testing. We also developed an environmental testing protocol to readily monitor surfaces across various campus laboratories for the presence of SARS-CoV-2. Our blueprint should be readily reproducible by research teams at other institutions, and our protocols may be modified and adapted to enable SARS-CoV-2 detection in more resource-limited settings.

17.
Integr Biol (Camb) ; 11(4): 154-162, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31135880

RESUMEN

Human mesenchymal stromal cells (hMSCs) are a promising cell source for numerous regenerative medicine and cell therapy-based applications. However, MSC-based therapies have faced challenges in translation to the clinic, in part due to the lack of sufficient technologies that accurately predict MSC potency and are viable in the context of cell manufacturing. Microfluidic platforms may provide an innovative opportunity to address these challenges by enabling multiparameter analyses of small sample sizes in a high throughput and cost-effective manner, and may provide a more predictive environment in which to analyze hMSC potency. To this end, we demonstrate the feasibility of incorporating 3D culture environments into microfluidic platforms for analysis of hMSC secretory response to inflammatory stimuli and multi-parameter testing using cost-effective and scalable approaches. We first find that the cytokine secretion profile for hMSCs cultured within synthetic poly(ethylene glycol)-based hydrogels is significantly different compared to those cultured on glass substrates, both in growth media and following stimulation with IFN-γ and TNF-α, for cells derived from two donors. For both donors, perfusion with IFN-γ and TNF-α leads to differences in secretion of interleukin 6 (IL-6), interleukin 8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), macrophage colony-stimulating factor (M-CSF), and interleukin-1 receptor antagonist (IL-1ra) between hMSCs cultured in hydrogels and those cultured on glass substrates. We then demonstrate the feasibility of analyzing the response of hMSCs to a stable concentration gradient of soluble factors such as inflammatory stimuli for potential future use in potency analyses, minimizing the amount of sample required for dose-response testing.


Asunto(s)
Células Madre Mesenquimatosas/citología , Microfluídica , Células del Estroma/citología , Técnicas de Cultivo de Célula/economía , Técnicas de Cultivo de Célula/métodos , Citocinas/metabolismo , Humanos , Hidrogeles/química , Sistema Inmunológico , Inflamación , Interferón gamma/metabolismo , Dispositivos Laboratorio en un Chip , Oligopéptidos/química , Polietilenglicoles/química , Factor de Necrosis Tumoral alfa/metabolismo
18.
Biomicrofluidics ; 12(4): 042203, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29861814

RESUMEN

Numerous conditions and disease states such as sickle cell disease, malaria, thrombotic microangiopathy, and stroke significantly impact the microvasculature function and its role in disease progression. Understanding the role of cellular interactions and microvascular hemodynamic forces in the context of disease is crucial to understanding disease pathophysiology. In vivo models of microvascular disease using animal models often coupled with intravital microscopy have long been utilized to investigate microvascular phenomena. However, these methods suffer from some major drawbacks, including the inability to tightly and quantitatively control experimental conditions, the difficulty of imaging multiple microvascular beds within a living organism, and the inability to isolate specific microvascular geometries such as bifurcations. Thus, there exists a need for in vitro microvascular models that can mitigate the drawbacks associated with in vivo systems. To that end, microfluidics has been widely used to develop such models, as it allows for tight control of system inputs, facile imaging, and the ability to develop robust and repeatable systems with well-defined geometries. Incorporating endothelial cells to branching microfluidic models allows for the development of "endothelialized" systems that accurately recapitulate physiological microvessels. In this review, we summarize the field of endothelialized microfluidics, specifically focusing on fabrication methods, limitations, and applications of these systems. We then speculate on future directions and applications of these cutting edge technologies. We believe that this review of the field is of importance to vascular biologists and bioengineers who aim to utilize microfluidic technologies to solve vascular problems.

19.
Curr Opin Biomed Eng ; 5: 13-20, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29756078

RESUMEN

Investigating the complex interplay between blood cells and the endothelium is crucial in understanding the pathophysiology of many diseases. Observation of the in vivo vasculature is difficult due to the complexities of vessel geometry, limited visualization capability, as well as variability and complexity inherent to biologic systems. Therefore, in vitro systems serve as ideal tools to study these cellular interactions. Microfluidic technologies are an ideal tool for recapitulating the vasculature in vivo as they can be used to fabricate fluidic channels on the size scale capillaries using gas permeable, biologically inert, and optically transparent substrates. Microfluidic channels can be vascularized by coating the inner surface of the microchannels with a confluent monolayer of endothelial cells, representing a reductionist, tightly controlled, in vitro model of the microvasculature. In this review, we present advances in the field of "endothelialized" microfluidics, focusing specifically on non-traditional fabrication and endothelialization techniques. We then summarize the various applications of endothelialized microfluidics, and speculate on the future directions of the field, including the exciting applications to personalized medicine.

20.
Curr Opin Biomed Eng ; 5: 29-34, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34765849

RESUMEN

The most common pathology of the blood-vessel organ system is thrombosis or undesirable clotting of the blood. Thrombosis is life threatening as more than 25% of such cases lead to sudden death from stroke and myocardial infarction. Even though the process of thrombosis has been extensively investigated with animal models, its exact pathobiology in different blood vessels is not yet fully understood and drug assessment remains unpredictable. This is primarily because the cause for thrombus formation is multifactorial and depends on the interplay of flow patterns within the blood vessel, the vessel wall or endothelium, extracellular matrix, parenchymal tissue, and the cellular and plasma components of the blood. Current in vitro and animal models do not mimic or dissect this organ-level complexity faithfully. However, microfluidic technology has recently been deployed to effectively recapitulate blood-endothelial-epithelial interactions in the onset of thrombosis in blood vessels. This technology is promising because it permits inclusion of primary human cells and blood obtained from patients, which is currently lacking in other in vitro models of thrombosis. In this review, we summarize the current state-of-the-art and practices in microfluidics and expected improvements in this field that will impact basic understanding of thrombosis, drug discovery and personalized medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA