RESUMEN
BACKGROUND: Early diagnosis remains a challenge for prostate cancer (PCa) due to molecular heterogeneity. The purpose of our study was to explore the diagnostic potential of microRNA (miRNA) in both tissue and serum that may aid in the precise and early clinical diagnosis of PCa. MATERIALS AND METHODS: The miRNA expression pattern analysis was carried out in 250 subjects (discovery and validation cohort). The Discovery Cohort included the control (n = 30) and PCa (n = 35) subjects, while the Validation Cohort included the healthy control (n = 60), benign prostate hyperplasia (BPH) (n = 55), PCa (n = 50), and castration-resistant PCa (CRPC) (n = 20) patients. The expression analysis of tissue (Discovery Cohort) and serum (Validation Cohort) was carried out by quantitative polymerase chain reaction (qPCR). The diagnostic biomarker potential was evaluated using receiver operating characteristics (ROC). Bioinformatic tools were used to explore and analyze miRNA target genes. RESULTS: MiRNA 4510 and miRNA 183 were significantly (p<0.001) upregulated and miRNA 329 was significantly (p<0.0001) downregulated in both PCa tissue and serum. ROC curve analysis showed excellent non-invasive biomarker potential of miRNA 4510 in both PCa (area under the curve (AUC) 0.984; p<0.001) and CRPC (AUC 0.944; p<0.001). The panel of serum miRNAs (miRNA 183 and miRNA 4510) designed for PCa had significant and greater AUC with both 100% sensitivity and specificity. Computational analysis shows that the maximum number of target genes are transcription factors that regulate oncogenes and tumor suppressors. CONCLUSION: Based on ROC curve analysis, miRNAs 4510, 329, and 711 were identified as potential non-invasive diagnostic biomarkers in the early detection of PCa. Our findings imply that a panel of miRNAs 183 and 4510 has high specificity for distinguishing PCa from healthy controls and providing therapeutic targets for better and earlier PCa therapy.
RESUMEN
Background: Owing to the heterogeneous nature of prostate cancer (PCa) and errors in the characterization of the disease, researchers have been trying to unveil molecular biomarkers like microRNA (miRNA) as diagnostic markers. The purpose of our study is to demonstrate the precision of a panel of miRNAs as biomarkers with diagnostic potential for risk stratification. Materials and methods: The present study demonstrates the comparative expression profiles of miRNA-141,-1290,-100, and -335 in both tissue and serum, including Benign Prostate Hyperplasia (BPH) and PCa, with healthy volunteers. Firstly, we demonstrate the expression of all miRNAs in the discovery cohort, including metastasis and benign tissue, and later validate their non-invasive diagnostic potential in BPH and PCa with healthy volunteers. MiRNA was isolated from tissue and serum to be quantified by RT-PCR and analyzed for biomarker potential by receiver operating characteristic (ROC) curve analysis, followed by targetome analysis of each miRNA. Results: Among the non-invasive miRNA assessed, it was seen that miRNA 141 (P = 0.0003) and miRNA 1290 (P < 0.0001) are oncogenic with significantly higher expression, while miRNA 100 (P = 0.0002) and miRNA 335 are tumor suppressor, in PCa as compared to controls. While for BPH, miRNA 141 (P = 0.003) and miRNA 335 (P = 0.0002) were found to be significantly oncogenic and tumor suppressors, respectively. The analysis of the ROC curve of panel miRNAs (miRNA-141,-1290, and -100) portrayed a significant area under the curve with greater sensitivity and specificity. Moreover, in-silico prediction of their respective targetomes represents their extensive involvement in PCa progression and various other cascades that aid in PCa networks. Conclusions: To the best of our knowledge, we are going to report for the first time this panel of miRNA that can be used to accurately and efficiently diagnose BPH and PCa patients from healthy males.