Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 103(1): 433-513, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35951482

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of disorders characterized by early-onset, often severe epileptic seizures and EEG abnormalities on a background of developmental impairment that tends to worsen as a consequence of epilepsy. DEEs may result from both nongenetic and genetic etiologies. Genetic DEEs have been associated with mutations in many genes involved in different functions including cell migration, proliferation, and organization, neuronal excitability, and synapse transmission and plasticity. Functional studies performed in different animal models and clinical trials on patients have contributed to elucidate pathophysiological mechanisms underlying many DEEs and have explored the efficacy of different treatments. Here, we provide an extensive review of the phenotypic spectrum included in the DEEs and of the genetic determinants and pathophysiological mechanisms underlying these conditions. We also provide a brief overview of the most effective treatment now available and of the emerging therapeutic approaches.


Asunto(s)
Epilepsia , Animales , Epilepsia/genética , Heterogeneidad Genética , Mutación
2.
Physiol Rev ; 101(4): 1633-1689, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33769100

RESUMEN

Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.


Asunto(s)
Encéfalo/fisiopatología , Canalopatías/fisiopatología , Músculo Esquelético/fisiopatología , Canales de Sodio , Animales , Canalopatías/genética , Humanos , Ratones , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Canales de Sodio/genética
3.
Proc Natl Acad Sci U S A ; 121(23): e2316364121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38809712

RESUMEN

Epilepsies have numerous specific mechanisms. The understanding of neural dynamics leading to seizures is important for disclosing pathological mechanisms and developing therapeutic approaches. We investigated electrographic activities and neural dynamics leading to convulsive seizures in patients and mouse models of Dravet syndrome (DS), a developmental and epileptic encephalopathy in which hypoexcitability of GABAergic neurons is considered to be the main dysfunction. We analyzed EEGs from DS patients carrying a SCN1A pathogenic variant, as well as epidural electrocorticograms, hippocampal local field potentials, and hippocampal single-unit neuronal activities in Scn1a+/- and Scn1aRH/+ DS mice. Strikingly, most seizures had low-voltage-fast onset in both patients and mice, which is thought to be generated by hyperactivity of GABAergic interneurons, the opposite of the main pathological mechanism of DS. Analyzing single-unit recordings, we observed that temporal disorganization of the firing of putative interneurons in the period immediately before the seizure (preictal) precedes the increase of their activity at seizure onset, together with the entire neuronal network. Moreover, we found early signatures of the preictal period in the spectral features of hippocampal and cortical field potential of Scn1a mice and of patients' EEG, which are consistent with the dysfunctions that we observed in single neurons and that allowed seizure prediction. Therefore, the perturbed preictal activity of interneurons leads to their hyperactivity at the onset of generalized seizures, which have low-voltage-fast features that are similar to those observed in other epilepsies and are triggered by hyperactivity of GABAergic neurons. Preictal spectral features may be used as predictive seizure biomarkers.


Asunto(s)
Epilepsias Mioclónicas , Neuronas GABAérgicas , Hipocampo , Interneuronas , Canal de Sodio Activado por Voltaje NAV1.1 , Convulsiones , Animales , Epilepsias Mioclónicas/fisiopatología , Epilepsias Mioclónicas/genética , Interneuronas/fisiología , Interneuronas/metabolismo , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Convulsiones/fisiopatología , Humanos , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Masculino , Hipocampo/fisiopatología , Hipocampo/metabolismo , Femenino , Modelos Animales de Enfermedad , Electroencefalografía , Niño
4.
Proc Natl Acad Sci U S A ; 121(14): e2309000121, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547067

RESUMEN

Apneic events are frightening but largely benign events that often occur in infants. Here, we report apparent life-threatening apneic events in an infant with the homozygous SCN1AL263V missense mutation, which causes familial hemiplegic migraine type 3 in heterozygous family members, in the absence of epilepsy. Observations consistent with the events in the infant were made in an Scn1aL263V knock-in mouse model, in which apnea was preceded by a large brainstem DC-shift, indicative of profound brainstem depolarization. The L263V mutation caused gain of NaV1.1 function effects in transfected HEK293 cells. Sodium channel blockade mitigated the gain-of-function characteristics, rescued lethal apnea in Scn1aL263V mice, and decreased the frequency of severe apneic events in the patient. Hence, this study shows that SCN1AL263V can cause life-threatening apneic events, which in a mouse model were caused by profound brainstem depolarization. In addition to being potentially relevant to sudden infant death syndrome pathophysiology, these data indicate that sodium channel blockers may be considered therapeutic for apneic events in patients with these and other gain-of-function SCN1A mutations.


Asunto(s)
Apnea , Mutación con Ganancia de Función , Bloqueadores de los Canales de Sodio , Animales , Humanos , Ratones , Apnea/tratamiento farmacológico , Apnea/genética , Tronco Encefálico , Células HEK293 , Migraña con Aura/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Bloqueadores de los Canales de Sodio/uso terapéutico , Lactante , Femenino
5.
J Neurosci ; 43(11): 1987-2001, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36810229

RESUMEN

Single-unit recordings performed in temporal lobe epilepsy patients and in models of temporal lobe seizures have shown that interneurons are active at focal seizure onset. We performed simultaneous patch-clamp and field potential recordings in entorhinal cortex slices of GAD65 and GAD67 C57BL/6J male mice that express green fluorescent protein in GABAergic neurons to analyze the activity of specific interneuron (IN) subpopulations during acute seizure-like events (SLEs) induced by 4-aminopyridine (4-AP; 100 µm). IN subtypes were identified as parvalbuminergic (INPV, n = 17), cholecystokinergic (INCCK), n = 13], and somatostatinergic (INSOM, n = 15), according to neurophysiological features and single-cell digital PCR. INPV and INCCK discharged at the start of 4-AP-induced SLEs characterized by either low-voltage fast or hyper-synchronous onset pattern. In both SLE onset types, INSOM fired earliest before SLEs, followed by INPV and INCCK discharges. Pyramidal neurons became active with variable delays after SLE onset. Depolarizing block was observed in ∼50% of cells in each INs subgroup, and it was longer in IN (∼4 s) than in pyramidal neurons (<1 s). As SLE evolved, all IN subtypes generated action potential bursts synchronous with the field potential events leading to SLE termination. High-frequency firing throughout the SLE occurred in one-third of INPV and INSOM We conclude that entorhinal cortex INs are very active at the onset and during the progression of SLEs induced by 4-AP. These results support earlier in vivo and in vivo evidence and suggest that INs have a preferential role in focal seizure initiation and development.SIGNIFICANCE STATEMENT Focal seizures are believed to result from enhanced excitation. Nevertheless, we and others demonstrated that cortical GABAergic networks may initiate focal seizures. Here, we analyzed for the first time the role of different IN subtypes in seizures generated by 4-aminopyridine in the mouse entorhinal cortex slices. We found that in this in vitro focal seizure model, all IN types contribute to seizure initiation and that INs precede firing of principal cells. This evidence is in agreement with the active role of GABAergic networks in seizure generation.


Asunto(s)
Epilepsia del Lóbulo Temporal , Animales , Masculino , Ratones , 4-Aminopiridina/toxicidad , Potenciales de Acción/fisiología , Corteza Entorrinal , Interneuronas/fisiología , Ratones Endogámicos C57BL , Convulsiones/inducido químicamente
6.
Epilepsia ; 65(1): 9-25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37914406

RESUMEN

Although animal models have helped to elaborate meaningful hypotheses about the pathophysiology of sudden and unexpected death in epilepsy (SUDEP), specific prevention strategies are still lacking, potentially reflecting the limitations of these models and the intrinsic difficulties of investigating SUDEP. The interpretation of preclinical data and their translation to diagnostic and therapeutic developments in patients thus require a high level of confidence in their relevance to model the human situation. Preclinical models of SUDEP are heterogeneous and include rodent and nonrodent species. A critical aspect is whether the animals have isolated seizures exclusively induced by a specific trigger, such as models where seizures are elicited by electrical stimulation, pharmacological intervention, or DBA mouse strains, or whether they suffer from epilepsy with spontaneous seizures, with or without spontaneous SUDEP, either of nongenetic epilepsy etiology or from genetically based developmental and epileptic encephalopathies. All these models have advantages and potential disadvantages, but it is important to be aware of these limitations to interpret data appropriately in a translational perspective. The majority of models with spontaneous seizures are of a genetic basis, whereas SUDEP cases with a genetic basis represent only a small proportion of the total number. In almost all models, cardiorespiratory arrest occurs during the course of the seizure, contrary to that in patients observed at the time of death, potentially raising the issue of whether we are studying models of SUDEP or models of periseizure death. However, some of these limitations are impossible to avoid and can in part be dependent on specific features of SUDEP, which may be difficult to model. Several preclinical tools are available to address certain gaps in SUDEP pathophysiology, which can be used to further validate current preclinical models.


Asunto(s)
Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Ratones , Animales , Humanos , Muerte Súbita e Inesperada en la Epilepsia/etiología , Ratones Endogámicos DBA , Convulsiones , Muerte Súbita/etiología , Muerte Súbita/prevención & control
7.
J Neurochem ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37654020

RESUMEN

The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV ) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and ß subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.

8.
Epilepsia ; 64(5): 1331-1347, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36636894

RESUMEN

OBJECTIVE: This study was undertaken to refine the spectrum of SCN1A epileptic disorders other than Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+) and optimize antiseizure management by correlating phenotype-genotype relationship and functional consequences of SCN1A variants in a cohort of patients. METHODS: Sixteen probands carrying SCN1A pathogenic variants were ascertained via a national collaborative network. We also performed a literature review including individuals with SCN1A variants causing non-DS and non-GEFS+ phenotypes and compared the features of the two cohorts. Whole cell patch clamp experiments were performed for three representative SCN1A pathogenic variants. RESULTS: Nine of the 16 probands (56%) had de novo pathogenic variants causing developmental and epileptic encephalopathy (DEE) with seizure onset at a median age of 2 months and severe intellectual disability. Seven of the 16 probands (54%), five with inherited and two with de novo variants, manifested focal epilepsies with mild or no intellectual disability. Sodium channel blockers never worsened seizures, and 50% of patients experienced long periods of seizure freedom. We found 13 SCN1A missense variants; eight of them were novel and never reported. Functional studies of three representative variants showed a gain of channel function. The literature review led to the identification of 44 individuals with SCN1A variants and non-DS, non-GEFS+ phenotypes. The comparison with our cohort highlighted that DEE phenotypes are a common feature. SIGNIFICANCE: The boundaries of SCN1A disorders are wide and still expanding. In our cohort, >50% of patients manifested focal epilepsies, which are thus a frequent feature of SCN1A pathogenic variants beyond DS and GEFS+. SCN1A testing should therefore be included in the diagnostic workup of pediatric, familial and nonfamilial, focal epilepsies. Alternatively, non-DS/non-GEFS+ phenotypes might be associated with gain of channel function, and sodium channel blockers could control seizures by counteracting excessive channel function. Functional analysis evaluating the consequences of pathogenic SCN1A variants is thus relevant to tailor the appropriate antiseizure medication.


Asunto(s)
Epilepsias Mioclónicas , Epilepsias Parciales , Canal de Sodio Activado por Voltaje NAV1.1 , Humanos , Causalidad , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Mutación con Ganancia de Función , Discapacidad Intelectual/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Fenotipo , Bloqueadores de los Canales de Sodio/uso terapéutico
9.
Brain ; 145(11): 3816-3831, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35696452

RESUMEN

Brain voltage-gated sodium channel NaV1.1 (SCN1A) loss-of-function variants cause the severe epilepsy Dravet syndrome, as well as milder phenotypes associated with genetic epilepsy with febrile seizures plus. Gain of function SCN1A variants are associated with familial hemiplegic migraine type 3. Novel SCN1A-related phenotypes have been described including early infantile developmental and epileptic encephalopathy with movement disorder, and more recently neonatal presentations with arthrogryposis. Here we describe the clinical, genetic and functional evaluation of affected individuals. Thirty-five patients were ascertained via an international collaborative network using a structured clinical questionnaire and from the literature. We performed whole-cell voltage-clamp electrophysiological recordings comparing sodium channels containing wild-type versus variant NaV1.1 subunits. Findings were related to Dravet syndrome and familial hemiplegic migraine type 3 variants. We identified three distinct clinical presentations differing by age at onset and presence of arthrogryposis and/or movement disorder. The most severely affected infants (n = 13) presented with congenital arthrogryposis, neonatal onset epilepsy in the first 3 days of life, tonic seizures and apnoeas, accompanied by a significant movement disorder and profound intellectual disability. Twenty-one patients presented later, between 2 weeks and 3 months of age, with a severe early infantile developmental and epileptic encephalopathy and a movement disorder. One patient presented after 3 months with developmental and epileptic encephalopathy only. Associated SCN1A variants cluster in regions of channel inactivation associated with gain of function, different to Dravet syndrome variants (odds ratio = 17.8; confidence interval = 5.4-69.3; P = 1.3 × 10-7). Functional studies of both epilepsy and familial hemiplegic migraine type 3 variants reveal alterations of gating properties in keeping with neuronal hyperexcitability. While epilepsy variants result in a moderate increase in action current amplitude consistent with mild gain of function, familial hemiplegic migraine type 3 variants induce a larger effect on gating properties, in particular the increase of persistent current, resulting in a large increase of action current amplitude, consistent with stronger gain of function. Clinically, 13 out of 16 (81%) gain of function variants were associated with a reduction in seizures in response to sodium channel blocker treatment (carbamazepine, oxcarbazepine, phenytoin, lamotrigine or lacosamide) without evidence of symptom exacerbation. Our study expands the spectrum of gain of function SCN1A-related epilepsy phenotypes, defines key clinical features, provides novel insights into the underlying disease mechanisms between SCN1A-related epilepsy and familial hemiplegic migraine type 3, and identifies sodium channel blockers as potentially efficacious therapies. Gain of function disease should be considered in early onset epilepsies with a pathogenic SCN1A variant and non-Dravet syndrome phenotype.


Asunto(s)
Artrogriposis , Epilepsias Mioclónicas , Epilepsia , Migraña con Aura , Trastornos del Movimiento , Espasmos Infantiles , Humanos , Epilepsias Mioclónicas/tratamiento farmacológico , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/diagnóstico , Epilepsia/genética , Epilepsia/diagnóstico , Mutación con Ganancia de Función , Canal de Sodio Activado por Voltaje NAV1.1/genética , Fenotipo , Recién Nacido , Lactante
10.
J Math Biol ; 86(6): 92, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37171678

RESUMEN

NaV1.1 (SCN1A) is a voltage-gated sodium channel mainly expressed in GABAergic neurons. Loss of function mutations of NaV1.1 lead to epileptic disorders, while gain of function mutations cause a migraine in which cortical spreading depolarizations (CSDs) are involved. It is still debated how these opposite effects initiate two different manifestations of neuronal hyperactivity: epileptic seizures and CSD. To investigate this question, we previously built a conductance-based model of two neurons (GABAergic and pyramidal), with dynamic ion concentrations (Lemaire et al. in PLoS Comput Biol 17(7):e1009239, 2021. https://doi.org/10.1371/journal.pcbi.1009239 ). When implementing either NaV1.1 migraine or epileptogenic mutations, ion concentration modifications acted as slow processes driving the system to the corresponding pathological firing regime. However, the large dimensionality of the model complicated the exploitation of its implicit multi-timescale structure. Here, we substantially simplify our biophysical model to a minimal version more suitable for bifurcation analysis. The explicit timescale separation allows us to apply slow-fast theory, where slow variables are treated as parameters in the fast singular limit. In this setting, we reproduce both pathological transitions as dynamic bifurcations in the full system. In the epilepsy condition, we shift the spike-terminating bifurcation to lower inputs for the GABAergic neuron, to model an increased susceptibility to depolarization block. The resulting failure of synaptic inhibition triggers hyperactivity of the pyramidal neuron. In the migraine scenario, spiking-induced release of potassium leads to the abrupt increase of the extracellular potassium concentration. This causes a dynamic spike-terminating bifurcation of both neurons, which we interpret as CSD initiation.


Asunto(s)
Epilepsia , Trastornos Migrañosos , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Epilepsia/genética , Neuronas/fisiología , Mutación , Potenciales de Acción/fisiología , Trastornos Migrañosos/genética
11.
PLoS Comput Biol ; 17(7): e1009239, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34314446

RESUMEN

Loss of function mutations of SCN1A, the gene coding for the voltage-gated sodium channel NaV1.1, cause different types of epilepsy, whereas gain of function mutations cause sporadic and familial hemiplegic migraine type 3 (FHM-3). However, it is not clear yet how these opposite effects can induce paroxysmal pathological activities involving neuronal networks' hyperexcitability that are specific of epilepsy (seizures) or migraine (cortical spreading depolarization, CSD). To better understand differential mechanisms leading to the initiation of these pathological activities, we used a two-neuron conductance-based model of interconnected GABAergic and pyramidal glutamatergic neurons, in which we incorporated ionic concentration dynamics in both neurons. We modeled FHM-3 mutations by increasing the persistent sodium current in the interneuron and epileptogenic mutations by decreasing the sodium conductance in the interneuron. Therefore, we studied both FHM-3 and epileptogenic mutations within the same framework, modifying only two parameters. In our model, the key effect of gain of function FHM-3 mutations is ion fluxes modification at each action potential (in particular the larger activation of voltage-gated potassium channels induced by the NaV1.1 gain of function), and the resulting CSD-triggering extracellular potassium accumulation, which is not caused only by modifications of firing frequency. Loss of function epileptogenic mutations, on the other hand, increase GABAergic neurons' susceptibility to depolarization block, without major modifications of firing frequency before it. Our modeling results connect qualitatively to experimental data: potassium accumulation in the case of FHM-3 mutations and facilitated depolarization block of the GABAergic neuron in the case of epileptogenic mutations. Both these effects can lead to pyramidal neuron hyperexcitability, inducing in the migraine condition depolarization block of both the GABAergic and the pyramidal neuron. Overall, our findings suggest different mechanisms of network hyperexcitability for migraine and epileptogenic NaV1.1 mutations, implying that the modifications of firing frequency may not be the only relevant pathological mechanism.


Asunto(s)
Epilepsia/genética , Trastornos Migrañosos/genética , Modelos Neurológicos , Mutación , Canal de Sodio Activado por Voltaje NAV1.1/genética , Potenciales de Acción/fisiología , Animales , Biología Computacional , Depresión de Propagación Cortical/fisiología , Modelos Animales de Enfermedad , Epilepsia/fisiopatología , Femenino , Neuronas GABAérgicas/fisiología , Mutación con Ganancia de Función , Humanos , Interneuronas/fisiología , Activación del Canal Iónico/fisiología , Mutación con Pérdida de Función , Masculino , Conceptos Matemáticos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos Migrañosos/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.1/deficiencia , Canal de Sodio Activado por Voltaje NAV1.1/fisiología , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Corteza Somatosensorial/fisiopatología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/deficiencia , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/fisiología
12.
J Neurosci ; 40(37): 7013-7026, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32801157

RESUMEN

Sulfotransferase 4A1 (SULT4A1) is a cytosolic sulfotransferase that is highly conserved across species and extensively expressed in the brain. However, the biological function of SULT4A1 is unclear. SULT4A1 has been implicated in several neuropsychiatric disorders, such as Phelan-McDermid syndrome and schizophrenia. Here, we investigate the role of SULT4A1 within neuron development and function. Our data demonstrate that SULT4A1 modulates neuronal branching complexity and dendritic spines formation. Moreover, we show that SULT4A1, by negatively regulating the catalytic activity of Pin1 toward PSD-95, facilitates NMDAR synaptic expression and function. Finally, we demonstrate that the pharmacological inhibition of Pin1 reverses the pathologic phenotypes of neurons knocked down by SULT4A1 by specifically restoring dendritic spine density and rescuing NMDAR-mediated synaptic transmission. Together, these findings identify SULT4A1 as a novel player in neuron development and function by modulating dendritic morphology and synaptic activity.SIGNIFICANCE STATEMENT Sulfotransferase 4A1 (SULT4A1) is a brain-specific sulfotransferase highly expressed in neurons. Different evidence has suggested that SULT4A1 has an important role in neuronal function and that SULT4A1 altered expression might represent a contributing factor in multiple neurodevelopmental disorders. However, the function of SULT4A1 in the mammalian brain is still unclear. Here, we demonstrate that SULT4A1 is highly expressed at postsynaptic sites where it sequesters Pin1, preventing its negative action on synaptic transmission. This study reveals a novel role of SULT4A1 in the modulation of NMDA receptor activity and strongly contributes to explaining the neuronal dysfunction observed in patients carrying deletions of SULTA41 gene.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/metabolismo , Neurogénesis , Receptores de N-Metil-D-Aspartato/metabolismo , Sulfotransferasas/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Ratas , Sulfotransferasas/genética , Sinapsis/fisiología , Transmisión Sináptica
13.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071322

RESUMEN

Rubinstein-Taybi syndrome (RSTS) is a rare neurodevelopmental disorder caused by mutations in CREBBP or EP300 genes encoding CBP/p300 lysine acetyltransferases. We investigated the efficacy of the histone deacetylase inhibitor (HDACi) Trichostatin A (TSA) in ameliorating morphological abnormalities of iPSC-derived young neurons from P149 and P34 CREBBP-mutated patients and hypoexcitability of mature neurons from P149. Neural progenitors from both patients' iPSC lines were cultured one week with TSA 20 nM and, only P149, for 6 weeks with TSA 0.2 nM, in parallel to neural progenitors from controls. Immunofluorescence of MAP2/TUJ1 positive cells using the Skeletonize Image J plugin evidenced that TSA partially rescued reduced nuclear area, and decreased branch length and abnormal end points number of both 45 days patients' neurons, but did not influence the diminished percentage of their neurons with respect to controls. Patch clamp recordings of TSA-treated post-mitotic P149 neurons showed complete/partial rescue of sodium/potassium currents and significant enhancement of neuron excitability compared to untreated replicas. Correction of abnormalities of P149 young neurons was also affected by valproic acid 1 mM for 72 h, with some variation, with respect to TSA, on the morphological parameter. These findings hold promise for development of an epigenetic therapy to attenuate RSTS patients cognitive impairment.


Asunto(s)
Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Neuronas/efectos de los fármacos , Adolescente , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Niño , Proteína p300 Asociada a E1A/genética , Electroencefalografía , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Imagen por Resonancia Magnética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Mutación , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp , Síndrome de Rubinstein-Taybi/diagnóstico por imagen , Síndrome de Rubinstein-Taybi/genética , Síndrome de Rubinstein-Taybi/fisiopatología
14.
Neurobiol Dis ; 125: 31-44, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659983

RESUMEN

SCN1A (NaV1.1 sodium channel) mutations cause Dravet syndrome (DS) and GEFS+ (which is in general milder), and are risk factors in other epilepsies. Phenotypic variability limits precision medicine in epilepsy, and it is important to identify factors that set phenotype severity and their mechanisms. It is not yet clear whether SCN1A mutations are necessary for the development of severe phenotypes or just for promoting seizures. A relevant example is the pleiotropic R1648H mutation that can cause either mild GEFS+ or severe DS. We used a R1648H knock-in mouse model (Scn1aRH/+) with mild/asymptomatic phenotype to dissociate the effects of seizures and of the mutation per se. The induction of short repeated seizures, at the age of disease onset for Scn1a mouse models (P21), had no effect in WT mice, but transformed the mild/asymptomatic phenotype of Scn1aRH/+ mice into a severe DS-like phenotype, including frequent spontaneous seizures and cognitive/behavioral deficits. In these mice, we found no major modifications in cytoarchitecture or neuronal death, but increased excitability of hippocampal granule cells, consistent with a pathological remodeling. Therefore, we demonstrate for our model that an SCN1A mutation is a prerequisite for a long term deleterious effect of seizures on the brain, indicating a clear interaction between seizures and the mutation for the development of a severe phenotype generated by pathological remodeling. Applied to humans, this result suggests that genetic alterations, even if mild per se, may increase the risk of second hits to develop severe phenotypes.


Asunto(s)
Epilepsia/genética , Epilepsia/patología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/genética , Convulsiones/patología , Animales , Técnicas de Sustitución del Gen , Hipocampo/patología , Ratones , Mutación , Fenotipo
15.
J Comput Neurosci ; 47(2-3): 125-140, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31620945

RESUMEN

Cortical spreading depression (CSD) is a wave of transient intense neuronal firing leading to a long lasting depolarizing block of neuronal activity. It is a proposed pathological mechanism of migraine with aura. Some forms of migraine are associated with a genetic mutation of the Nav1.1 channel, resulting in its gain of function and implying hyperexcitability of interneurons. This leads to the counterintuitive hypothesis that intense firing of interneurons can cause CSD ignition. To test this hypothesis in silico, we developed a computational model of an E-I pair (a pyramidal cell and an interneuron), in which the coupling between the cells in not just synaptic, but takes into account also the effects of the accumulation of extracellular potassium caused by the activity of the neurons and of the synapses. In the context of this model, we show that the intense firing of the interneuron can lead to CSD. We have investigated the effect of various biophysical parameters on the transition to CSD, including the levels of glutamate or GABA, frequency of the interneuron firing and the efficacy of the KCC2 co-transporter. The key element for CSD ignition in our model was the frequency of interneuron firing and the related accumulation of extracellular potassium, which induced a depolarizing block of the pyramidal cell. This constitutes a new mechanism of CSD ignition.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiología , Depresión de Propagación Cortical/fisiología , Interneuronas/fisiología , Modelos Neurológicos , Células Piramidales/fisiología , Animales , Simulación por Computador , Sinapsis/fisiología
16.
Epilepsia ; 60 Suppl 3: S25-S38, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31904127

RESUMEN

Pathogenic SCN1A/NaV 1.1 mutations cause well-defined epilepsies, including genetic epilepsy with febrile seizures plus (GEFS+) and the severe epileptic encephalopathy Dravet syndrome. In addition, they cause a severe form of migraine with aura, familial hemiplegic migraine. Moreover, SCN1A/NaV 1.1 variants have been inferred as risk factors in other types of epilepsy. We review here the advancements obtained studying pathologic mechanisms of SCN1A/NaV 1.1 mutations with experimental systems. We present results gained with in vitro expression systems, gene-targeted animal models, and the induced pluripotent stem cell (iPSC) technology, highlighting advantages, limits, and pitfalls for each of these systems. Overall, the results obtained in the last two decades confirm that the initial pathologic mechanism of epileptogenic SCN1A/NaV 1.1 mutations is loss-of-function of NaV 1.1 leading to hypoexcitability of at least some types of γ-aminobutyric acid (GABA)ergic neurons (including cortical and hippocampal parvalbumin-positive and somatostatin-positive ones). Conversely, more limited results point to NaV 1.1 gain-of-function for familial hemiplegic migraine (FHM) mutations. Behind these relatively simple pathologic mechanisms, an unexpected complexity has been observed, in part generated by technical issues in experimental studies and in part related to intrinsically complex pathophysiologic responses and remodeling, which yet remain to be fully disentangled.


Asunto(s)
Canalopatías/genética , Epilepsias Mioclónicas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/genética , Animales , Humanos , Mutación/genética , Convulsiones Febriles/genética
17.
J Neurosci ; 37(28): 6606-6627, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28576939

RESUMEN

Mutations and deletions of the interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene, located on the X chromosome, are associated with intellectual disability (ID) and autism spectrum disorder (ASD). IL1RAPL1 protein is located at the postsynaptic compartment of excitatory synapses and plays a role in synapse formation and stabilization. Here, using primary neuronal cultures and Il1rapl1-KO mice, we characterized the role of IL1RAPL1 in regulating dendrite morphology. In Il1rapl1-KO mice we identified an increased number of dendrite branching points in CA1 and CA2 hippocampal neurons associated to hippocampal cognitive impairment. Similarly, induced pluripotent stem cell-derived neurons from a patient carrying a null mutation of the IL1RAPL1 gene had more dendrites. In hippocampal neurons, the overexpression of full-length IL1RAPL1 and mutants lacking part of C-terminal domains leads to simplified neuronal arborization. This effect is abolished when we overexpressed mutants lacking part of N-terminal domains, indicating that the IL1RAPL1 extracellular domain is required for regulating dendrite development. We also demonstrate that PTPδ interaction is not required for this activity, while IL1RAPL1 mediates the activity of IL-1ß on dendrite morphology. Our data reveal a novel specific function for IL1RAPL1 in regulating dendrite morphology that can help clarify how changes in IL1RAPL1-regulated pathways can lead to cognitive disorders in humans.SIGNIFICANCE STATEMENT Abnormalities in the architecture of dendrites have been observed in a variety of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Here we show that the X-linked intellectual disability protein interleukin-1 receptor accessory protein like 1 (IL1RAPL1) regulates dendrite morphology of mice hippocampal neurons and induced pluripotent stem cell-derived neurons from a patient carrying a null mutation of IL1RAPL1 gene. We also found that the extracellular domain of IL1RAPL1 is required for this effect, independently of the interaction with PTPδ, but IL1RAPL1 mediates the activity of IL-1ß on dendrite morphology. Our data reveal a novel specific function for IL1RAPL1 in regulating dendrite morphology that can help clarify how changes in IL1RAPL1-regulated pathways can lead to cognitive disorders in humans.


Asunto(s)
Dendritas/metabolismo , Dendritas/patología , Genes Ligados a X/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Proteína Accesoria del Receptor de Interleucina-1/genética , Animales , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/fisiopatología , Femenino , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Sprague-Dawley
18.
Stem Cells ; 35(2): 374-385, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27664080

RESUMEN

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a leading cause of autism. FXS is due to the silencing of the Fragile X Mental Retardation Protein (FMRP), an RNA binding protein mainly involved in translational control, dendritic spine morphology and synaptic plasticity. Despite extensive studies, there is currently no cure for FXS. With the purpose to decipher the initial molecular events leading to this pathology, we developed a stem-cell-based disease model by knocking-down the expression of Fmr1 in mouse embryonic stem cells (ESCs). Repressing FMRP in ESCs increased the expression of amyloid precursor protein (APP) and Ascl1. When inducing neuronal differentiation, ßIII-tubulin, p27kip1 , NeuN, and NeuroD1 were upregulated, leading to an accelerated neuronal differentiation that was partially compensated at later stages. Interestingly, we observed that neurogenesis is also accelerated in the embryonic brain of Fmr1-knockout mice, indicating that our cellular model recapitulates the molecular alterations present in vivo. Importantly, we rescued the main phenotype of the Fmr1 knockdown cell line, not only by reintroducing FMRP but also by pharmacologically targeting APP processing, showing the role of this protein in the pathophysiology of FXS during the earliest steps of neurogenesis. Our work allows to define an early therapeutic window but also to identify more effective molecules for treating this disorder. Stem Cells 2017;35:374-385.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Neurogénesis , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Forma de la Célula/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Cinética , Ratones , Ratones Noqueados , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/genética
20.
PLoS Biol ; 12(9): e1001944, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25203314

RESUMEN

Action potential (AP) generation in inhibitory interneurons is critical for cortical excitation-inhibition balance and information processing. However, it remains unclear what determines AP initiation in different interneurons. We focused on two predominant interneuron types in neocortex: parvalbumin (PV)- and somatostatin (SST)-expressing neurons. Patch-clamp recording from mouse prefrontal cortical slices showed that axonal but not somatic Na+ channels exhibit different voltage-dependent properties. The minimal activation voltage of axonal channels in SST was substantially higher (∼7 mV) than in PV cells, consistent with differences in AP thresholds. A more mixed distribution of high- and low-threshold channel subtypes at the axon initial segment (AIS) of SST cells may lead to these differences. Surprisingly, NaV1.2 was found accumulated at AIS of SST but not PV cells; reducing NaV1.2-mediated currents in interneurons promoted recurrent network activity. Together, our results reveal the molecular identity of axonal Na+ channels in interneurons and their contribution to AP generation and regulation of network activity.


Asunto(s)
Potenciales de Acción/fisiología , Interneuronas/metabolismo , Neocórtex/fisiología , Red Nerviosa/fisiología , Corteza Prefrontal/fisiología , Animales , Axones/metabolismo , Expresión Génica , Interneuronas/citología , Ratones , Ratones Transgénicos , Microtomía , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Neocórtex/citología , Red Nerviosa/citología , Parvalbúminas/genética , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Somatostatina/genética , Somatostatina/metabolismo , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA