Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurosci ; 59(4): 686-702, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37381891

RESUMEN

Functional connectivity (FC) during sleep has been shown to break down as non-rapid eye movement (NREM) sleep deepens before returning to a state closer to wakefulness during rapid eye movement (REM) sleep. However, the specific spatial and temporal signatures of these fluctuations in connectivity patterns remain poorly understood. This study aimed to investigate how frequency-dependent network-level FC fluctuates during nocturnal sleep in healthy young adults using high-density electroencephalography (hdEEG). Specifically, we examined source-localized FC in resting-state networks during NREM2, NREM3 and REM sleep (sleep stages scored using a semi-automatic procedure) in the first three sleep cycles of 29 participants. Our results showed that FC within and between all resting-state networks decreased from NREM2 to NREM3 sleep in multiple frequency bands and all sleep cycles. The data also highlighted a complex modulation of connectivity patterns during the transition to REM sleep whereby delta and sigma bands hosted a persistence of the connectivity breakdown in all networks. In contrast, a reconnection occurred in the default mode and the attentional networks in frequency bands characterizing their organization during wake (i.e., alpha and beta bands, respectively). Finally, all network pairs (except the visual network) showed higher gamma-band FC during REM sleep in cycle three compared to earlier sleep cycles. Altogether, our results unravel the spatial and temporal characteristics of the well-known breakdown in connectivity observed as NREM sleep deepens. They also illustrate a complex pattern of connectivity during REM sleep that is consistent with network- and frequency-specific breakdown and reconnection processes.


Asunto(s)
Encéfalo , Sueño , Adulto Joven , Humanos , Sueño REM , Electroencefalografía/métodos , Fases del Sueño , Vigilia
2.
Hum Brain Mapp ; 45(1): e26537, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38140712

RESUMEN

Synaptic plasticity relies on the balance between excitation and inhibition in the brain. As the primary inhibitory and excitatory neurotransmitters, gamma-aminobutyric acid (GABA) and glutamate (Glu), play critical roles in synaptic plasticity and learning. However, the role of these neurometabolites in motor learning is still unclear. Furthermore, it remains to be investigated which neurometabolite levels from the regions composing the sensorimotor network predict future learning outcome. Here, we studied the role of baseline neurometabolite levels in four task-related brain areas during different stages of motor skill learning under two different feedback (FB) conditions. Fifty-one healthy participants were trained on a bimanual motor task over 5 days while receiving either concurrent augmented visual FB (CA-VFB group, N = 25) or terminal intrinsic visual FB (TA-VFB group, N = 26) of their performance. Additionally, MRS-measured baseline GABA+ (GABA + macromolecules) and Glx (Glu + glutamine) levels were measured in the primary motor cortex (M1), primary somatosensory cortex (S1), dorsolateral prefrontal cortex (DLPFC), and medial temporal cortex (MT/V5). Behaviorally, our results revealed that the CA-VFB group outperformed the TA-VFB group during task performance in the presence of augmented VFB, while the TA-VFB group outperformed the CA-VFB group in the absence of augmented FB. Moreover, baseline M1 GABA+ levels positively predicted and DLPFC GABA+ levels negatively predicted both initial and long-term motor learning progress in the TA-VFB group. In contrast, baseline S1 GABA+ levels positively predicted initial and long-term motor learning progress in the CA-VFB group. Glx levels did not predict learning progress. Together, these findings suggest that baseline GABA+ levels predict motor learning capability, yet depending on the FB training conditions afforded to the participants.


Asunto(s)
Ácido Glutámico , Aprendizaje , Humanos , Aprendizaje/fisiología , Inhibición Psicológica , Destreza Motora , Ácido gamma-Aminobutírico
3.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732980

RESUMEN

Walking encompasses a complex interplay of neuromuscular coordination and cognitive processes. Disruptions in gait can impact personal independence and quality of life, especially among the elderly and neurodegenerative patients. While traditional biomechanical analyses and neuroimaging techniques have contributed to understanding gait control, they often lack the temporal resolution needed for rapid neural dynamics. This study employs a mobile brain/body imaging (MoBI) platform with high-density electroencephalography (hd-EEG) to explore event-related desynchronization and synchronization (ERD/ERS) during overground walking. Simultaneous to hdEEG, we recorded gait spatiotemporal parameters. Participants were asked to walk under usual walking and dual-task walking conditions. For data analysis, we extracted ERD/ERS in α, ß, and γ bands from 17 selected regions of interest encompassing not only the sensorimotor cerebral network but also the cognitive and affective networks. A correlation analysis was performed between gait parameters and ERD/ERS intensities in different networks in the different phases of gait. Results showed that ERD/ERS modulations across gait phases in the α and ß bands extended beyond the sensorimotor network, over the cognitive and limbic networks, and were more prominent in all networks during dual tasks with respect to usual walking. Correlation analyses showed that a stronger α ERS in the initial double-support phases correlates with shorter step length, emphasizing the role of attention in motor control. Additionally, ß ERD/ERS in affective and cognitive networks during dual-task walking correlated with dual-task gait performance, suggesting compensatory mechanisms in complex tasks. This study advances our understanding of neural dynamics during overground walking, emphasizing the multidimensional nature of gait control involving cognitive and affective networks.


Asunto(s)
Encéfalo , Electroencefalografía , Marcha , Caminata , Humanos , Marcha/fisiología , Masculino , Electroencefalografía/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Femenino , Adulto , Caminata/fisiología , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Adulto Joven
4.
Neuroimage ; 271: 120021, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36918139

RESUMEN

The discovery that human brain connectivity data can be used as a "fingerprint" to identify a given individual from a population, has become a burgeoning research area in the neuroscience field. Recent studies have identified the possibility to extract these brain signatures from the temporal rich dynamics of resting-state magneto encephalography (MEG) recordings. Nevertheless, it is still uncertain to what extent MEG signatures can serve as an indicator of human identifiability during task-related conduct. Here, using MEG data from naturalistic and neurophysiological tasks, we show that identification improves in tasks relative to resting-state, providing compelling evidence for a task dependent axis of MEG signatures. Notably, improvements in identifiability were more prominent in strictly controlled tasks. Lastly, the brain regions contributing most towards individual identification were also modified when engaged in task activities. We hope that this investigation advances our understanding of the driving factors behind brain identification from MEG signals.


Asunto(s)
Imagen por Resonancia Magnética , Magnetoencefalografía , Humanos , Encéfalo/fisiología , Mapeo Encefálico , Neurofisiología
5.
Neuroimage ; 266: 119830, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36566925

RESUMEN

Aging is associated with alterations in the brain including structural and metabolic changes. Previous research has focused on neurometabolite level differences associated to age in a variety of brain regions, but the relationship among metabolites across the brain has been much less studied. Investigating these relationships can reveal underlying neurometabolic processes, their interdependency, and their progress throughout the lifespan. Using 1H-MRS, we investigated the relationship among metabolite concentrations of N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myo-Inositol (mIns) and glutamate-glutamine complex (Glx) in seven voxel locations, i.e., bilateral sensorimotor cortex, bilateral striatum, pre-supplementary motor area, right inferior frontal gyrus and occipital cortex. These measurements were performed on 59 human participants divided in two age groups: young adults (YA: 23.2 ± 4.3; 18-34 years) and older adults (OA: 67.5 ± 3.9; 61-74 years). Our results showed age-related differences in NAA, Cho, and mIns across brain regions, suggesting the presence of neurodegeneration and altered gliosis. Moreover, associative patterns among NAA, Cho and Cr were observed across the selected brain regions, which differed between young and older adults. Whereas most of metabolite concentrations were inhomogeneous across different brain regions, Cho levels were shown to be strongly related across brain regions in both age groups. Finally, we found metabolic associations between homologous brain regions (SM1 and striatum) in the OA group, with NAA showing a significant correlation between bilateral sensorimotor cortices (SM1) and mIns levels being correlated between the bilateral striata. We posit that a network perspective provides important insights regarding the potential interactions among neurochemicals underlying metabolic processes at a local and global level and their relationship with aging.


Asunto(s)
Corteza Motora , Corteza Sensoriomotora , Adulto Joven , Humanos , Anciano , Espectroscopía de Protones por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Envejecimiento , Corteza Motora/metabolismo , Corteza Sensoriomotora/metabolismo , Corteza Prefrontal/metabolismo , Ácido Aspártico , Creatina/metabolismo , Colina/metabolismo , Inositol/metabolismo
6.
J Neurosci ; 41(2): 331-341, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33214318

RESUMEN

In complex everyday environments, action selection is critical for optimal goal-directed behavior. This refers to the process of choosing a proper action from the range of possible alternatives. The neural mechanisms underlying action selection and how these are affected by normal aging remain to be elucidated. In the present cross-sectional study, we studied processes of effector selection during a multilimb reaction time task in a lifespan sample of healthy human adults (N = 89; 20-75 years; 48 males, 41 females). Participants were instructed to react as quickly and accurately as possible to visually cued stimuli representing single-limb or combined upper and/or lower limb motions. Diffusion MRI was used to study structural connectivity between prefrontal and striatal regions as critical nodes for action selection. Behavioral findings revealed that increasing age was associated with slowing of action selection performance. At the neural level, aging had a negative impact on prefronto-striatal connectivity. Importantly, mediation analyses revealed that the negative association between action selection performance and age was mediated by prefronto-striatal connectivity, specifically the connections between left rostral medial frontal gyrus and left nucleus accumbens as well as right frontal pole and left caudate. These results highlight the potential role of prefronto-striatal white matter decline in poorer action selection performance of older adults.SIGNIFICANCE STATEMENT As a result of enhanced life expectancy, researchers have devoted increasing attention to the study of age-related alterations in cognitive and motor functions. Here we study associations between brain structure and behavior to reveal the impact of central neural white matter changes as a function of normal aging on action selection performance. We demonstrate the critical role of a reduction in prefronto-striatal structural connectivity in accounting for action selection performance deficits in healthy older adults. Preserving this cortico-subcortical pathway may be critical for behavioral flexibility and functional independence in older age.


Asunto(s)
Neostriado/anatomía & histología , Neostriado/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiología , Adulto , Anciano , Envejecimiento/fisiología , Núcleo Caudado/fisiología , Estudios Transversales , Señales (Psicología) , Toma de Decisiones , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Neostriado/crecimiento & desarrollo , Vías Nerviosas/crecimiento & desarrollo , Núcleo Accumbens/fisiología , Estimulación Luminosa , Corteza Prefrontal/crecimiento & desarrollo , Tiempo de Reacción/fisiología , Adulto Joven
7.
J Neurophysiol ; 127(2): 474-492, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936521

RESUMEN

The pressure of our own finger on the arm feels differently than the same pressure exerted by an external agent: the latter involves just touch, whereas the former involves a combination of touch and predictive output from the internal model of the body. This internal model predicts the movement of our own finger, and hence the intensity of the sensation of the finger press is decreased. A decrease in intensity of the self-produced stimulus is called sensory attenuation. It has been reported that, because of decreased proprioception with age and an increased reliance on the prediction of the internal model, sensory attenuation is increased in older adults. In this study, we used a force matching paradigm to test whether sensory attenuation is also present over the arm and whether aging increases sensory attenuation. We demonstrated that, although both young and older adults overestimate a self-produced force, older adults overestimate it even more, showing an increased sensory attenuation. In addition, we also found that both younger and older adults self-produce higher forces when activating the homologous muscles of the upper limb. Although this is traditionally viewed as evidence for an increased reliance on internal model function in older adults because of decreased proprioception, proprioception appeared unimpaired in our older participants. This begs the question of whether an age-related decrease in proprioception is really responsible for the increased sensory attenuation observed in older people.NEW & NOTEWORTHY Forces generated externally (by the environment on the participant) and internally (by the participant on her/his body) are not perceived with the same intensity. Internally generated forces are perceived less intensely than externally generated ones. This difference in force sensation has been shown to be higher in elderly participants when the forces were applied on the fingers because of their impaired proprioception. Here we replicated this finding for the arm but suggest that it is unlikely to be linked to impaired proprioception.


Asunto(s)
Envejecimiento/fisiología , Propiocepción/fisiología , Percepción del Tacto/fisiología , Extremidad Superior/fisiología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Hum Brain Mapp ; 43(11): 3404-3415, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35384123

RESUMEN

Balance and walking are fundamental to support common daily activities. Relatively accurate characterizations of normal and impaired gait features were attained at the kinematic and muscular levels. Conversely, the neural processes underlying gait dynamics still need to be elucidated. To shed light on gait-related modulations of neural activity, we collected high-density electroencephalography (hdEEG) signals and ankle acceleration data in young healthy participants during treadmill walking. We used the ankle acceleration data to segment each gait cycle in four phases: initial double support, right leg swing, final double support, left leg swing. Then, we processed hdEEG signals to extract neural oscillations in alpha, beta, and gamma bands, and examined event-related desynchronization/synchronization (ERD/ERS) across gait phases. Our results showed that ERD/ERS modulations for alpha, beta, and gamma bands were strongest in the primary sensorimotor cortex (M1), but were also found in premotor cortex, thalamus and cerebellum. We observed a modulation of neural oscillations across gait phases in M1 and cerebellum, and an interaction between frequency band and gait phase in premotor cortex and thalamus. Furthermore, an ERD/ERS lateralization effect was present in M1 for the alpha and beta bands, and in the cerebellum for the beta and gamma bands. Overall, our findings demonstrate that an electrophysiological source imaging approach based on hdEEG can be used to investigate dynamic neural processes of gait control. Future work on the development of mobile hdEEG-based brain-body imaging platforms may enable overground walking investigations, with potential applications in the study of gait disorders.


Asunto(s)
Corteza Motora , Corteza Sensoriomotora , Electroencefalografía , Marcha/fisiología , Humanos , Corteza Motora/fisiología , Caminata/fisiología
9.
Neuroimage ; 226: 117470, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137478

RESUMEN

During the sleep-wake cycle, the brain undergoes profound dynamical changes, which manifest subjectively as transitions between conscious experience and unconsciousness. Yet, neurophysiological signatures that can objectively distinguish different consciousness states based are scarce. Here, we show that differences in the level of brain-wide signals can reliably distinguish different stages of sleep and anesthesia from the awake state in human and monkey fMRI resting state data. Moreover, a whole-brain computational model can faithfully reproduce changes in global synchronization and other metrics such as functional connectivity, structure-function relationship, integration and segregation across vigilance states. We demonstrate that the awake brain is close to a Hopf bifurcation, which naturally coincides with the emergence of globally correlated fMRI signals. Furthermore, simulating lesions of individual brain areas highlights the importance of connectivity hubs in the posterior brain and subcortical nuclei for maintaining the model in the awake state, as predicted by graph-theoretical analyses of structural data.


Asunto(s)
Encéfalo/fisiología , Simulación por Computador , Estado de Conciencia/fisiología , Sincronización Cortical/fisiología , Modelos Neurológicos , Animales , Mapeo Encefálico/métodos , Haplorrinos , Humanos , Imagen por Resonancia Magnética/métodos , Sueño/fisiología , Inconsciencia/patología
10.
Neuroimage ; 226: 117536, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33186716

RESUMEN

Healthy aging is associated with mechanistic changes in gamma-aminobutyric acid (GABA), the most abundant inhibitory neurotransmitter in the human brain. While previous work mainly focused on magnetic resonance spectroscopy (MRS)-based GABA+ levels and transcranial magnetic stimulation (TMS)-based GABAA receptor (GABAAR) activity in the primary sensorimotor (SM1) cortex, the aim of the current study was to identify age-related differences in positron emission tomography (PET)-based GABAAR availability and its relationship with GABA+ levels (i.e. GABA with the contribution of macromolecules) and GABAAR activity. For this purpose, fifteen young (aged 20-28 years) and fifteen older (aged 65-80 years) participants were recruited. PET and MRS images were acquired using simultaneous time-of-flight PET/MR to evaluate age-related differences in GABAAR availability (distribution volume ratio with pons as reference region) and GABA+ levels. TMS was applied to identify age-related differences in GABAAR activity by measuring short-interval intracortical inhibition (SICI). Whereas GABAAR availability was significantly higher in the SM cortex of older as compared to young adults (18.5%), there were neither age-related differences in GABA+ levels nor SICI. A correlation analysis revealed no significant associations between GABAAR availability, GABAAR activity and GABA+ levels. Although the exact mechanisms need to be further elucidated, it is possible that a higher GABAAR availability in older adults is a compensatory mechanism to ensure optimal inhibitory functionality during the aging process.


Asunto(s)
Envejecimiento/metabolismo , Imagen Multimodal/métodos , Receptores de GABA-A/metabolismo , Corteza Sensoriomotora/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Tomografía de Emisión de Positrones/métodos , Estimulación Magnética Transcraneal/métodos , Adulto Joven
11.
Neuroimage ; 237: 118158, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991699

RESUMEN

While it is widely accepted that motor sequence learning (MSL) is supported by a prefrontal-mediated interaction between hippocampal and striatal networks, it remains unknown whether the functional responses of these networks can be modulated in humans with targeted experimental interventions. The present proof-of-concept study employed a multimodal neuroimaging approach, including functional magnetic resonance (MR) imaging and MR spectroscopy, to investigate whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex can modulate responses in the hippocampus and the basal ganglia during motor learning. Our results indicate that while stimulation did not modulate motor performance nor task-related brain activity, it influenced connectivity patterns within hippocampo-frontal and striatal networks. Stimulation also altered the relationship between the levels of gamma-aminobutyric acid (GABA) in the stimulated prefrontal cortex and learning-related changes in both activity and connectivity in fronto-striato-hippocampal networks. This study provides the first experimental evidence, to the best of our knowledge, that brain stimulation can alter motor learning-related functional responses in the striatum and hippocampus.


Asunto(s)
Núcleo Caudado/fisiología , Conectoma , Potenciales Evocados Motores/fisiología , Hipocampo/fisiología , Actividad Motora/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Aprendizaje Seriado/fisiología , Estimulación Magnética Transcraneal , Ácido gamma-Aminobutírico/metabolismo , Adulto , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo , Prueba de Estudio Conceptual , Adulto Joven
12.
Hum Brain Mapp ; 42(15): 5113-5129, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34331365

RESUMEN

Recent studies provide novel insights into the meso-scale organization of the brain, highlighting the co-occurrence of different structures: classic assortative (modular), disassortative, and core-periphery. However, the spectral properties of the brain meso-scale remain mostly unexplored. To fill this knowledge gap, we investigated how the meso-scale structure is organized across the frequency domain. We analyzed the resting state activity of healthy participants with source-localized high-density electroencephalography signals. Then, we inferred the community structure using weighted stochastic block-model (WSBM) to capture the landscape of meso-scale structures across the frequency domain. We found that different meso-scale modalities co-exist and are diversely organized over the frequency spectrum. Specifically, we found a core-periphery structure dominance, but we also highlighted a selective increase of disassortativity in the low frequency bands (<8 Hz), and of assortativity in the high frequency band (30-50 Hz). We further described other features of the meso-scale organization by identifying those brain regions which, at the same time, (a) exhibited the highest degree of assortativity, disassortativity, and core-peripheriness (i.e., participation) and (b) were consistently assigned to the same community, irrespective from the granularity imposed by WSBM (i.e., granularity-invariance). In conclusion, we observed that the brain spontaneous activity shows frequency-specific meso-scale organization, which may support spatially distributed and local information processing.


Asunto(s)
Ondas Encefálicas/fisiología , Encéfalo/fisiología , Conectoma , Electroencefalografía , Red Nerviosa/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
13.
Hum Brain Mapp ; 42(4): 1153-1166, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33200500

RESUMEN

Working memory (WM) performance is very often measured using the n-back task, in which the participant is presented with a sequence of stimuli, and required to indicate whether the current stimulus matches the one presented n steps earlier. In this study, we used high-density electroencephalography (hdEEG) coupled to source localization to obtain information on spatial distribution and temporal dynamics of neural oscillations associated with WM update, maintenance and readout. Specifically, we a priori selected regions from a large fronto-parietal network, including also the insula and the cerebellum, and we analyzed modulation of neural oscillations by event-related desynchronization and synchronization (ERD/ERS). During update and readout, we found larger θ ERS and smaller ß ERS respect to maintenance in all the selected areas. γLOW and γHIGH bands oscillations decreased in the frontal and insular cortices of the left hemisphere. In the maintenance phase we observed decreased θ oscillations and increased ß oscillations (ERS) in most of the selected posterior areas and focally increased oscillations in γLOW and γHIGH bands in the frontal and insular cortices of the left hemisphere. Finally, during WM readout, we also found a focal modulation of the γLOW band in the left fusiform cortex and cerebellum, depending on the response trial type (true positive vs. true negative). Overall, our study demonstrated specific spectral signatures associated with updating of memory information, WM maintenance, and readout, with relatively high spatial resolution.


Asunto(s)
Ondas Encefálicas/fisiología , Cerebelo/fisiología , Corteza Cerebral/fisiología , Sincronización Cortical/fisiología , Electroencefalografía/métodos , Memoria a Corto Plazo/fisiología , Red Nerviosa/fisiología , Adulto , Femenino , Lóbulo Frontal/fisiología , Humanos , Corteza Insular/fisiología , Masculino
14.
Cereb Cortex ; 30(8): 4346-4360, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32133505

RESUMEN

Aging is accompanied by marked changes in motor behavior and its neural correlates. At the behavioral level, age-related declines in motor performance manifest, for example, as a reduced capacity to inhibit interference between hands during bimanual movements, particularly when task complexity increases. At the neural level, aging is associated with reduced differentiation between distinct functional systems. Functional connectivity (FC) dedifferentiation is characterized by more homogeneous connectivity patterns across various tasks or task conditions, reflecting a reduced ability of the aging adult to modulate brain activity according to changing task demands. It is currently unknown, however, how whole-brain dedifferentiation interacts with increasing task complexity. In the present study, we investigated age- and task-related FC in a group of 96 human adults across a wide age range (19.9-74.5 years of age) during the performance of a bimanual coordination task of varying complexity. Our findings indicated stronger task complexity-related differentiation between visuomotor- and nonvisuomotor-related networks, though modulation capability decreased with increasing age. Decreased FC modulation mediated larger complexity-related increases in between-hand interference, reflective of worse bimanual coordination. Thus, the ability to maintain high motor performance levels in older adults is related to the capability to properly segregate and modulate functional networks.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Vías Nerviosas/fisiología , Desempeño Psicomotor/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
15.
Neuroimage ; 209: 116530, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31931154

RESUMEN

Age-related differences in bimanual motor performance have been extensively documented, but their underlying neural mechanisms remain less clear. Studies applying diffusion MRI in the aging population have revealed evidence for age-related white matter variations in the corpus callosum (CC) which are related to bimanual motor performance. However, the diffusion tensor model used in those studies is confounded by partial volume effects in voxels with complex fiber geometries which are present in up to 90% of white matter voxels, including the bilateral projections of the CC. A recently developed whole-brain analysis framework, known as fixel-based analysis (FBA), enables comprehensive statistical analyses of white matter quantitative measures in the presence of such complex fiber geometries. To investigate the contribution of age-related fiber-specific white matter variations to age-related differences in bimanual performance, a cross-sectional lifespan sample of healthy human adults (N â€‹= â€‹95; 20-75 years of age) performed a bimanual tracking task. Furthermore, diffusion MRI data were acquired and the FBA metrics associated with fiber density, cross-section, and combined fiber density and cross-section were estimated. Whole-brain FBA revealed significant negative associations between age and fiber density, cross-section, and combined metrics of multiple white matter tracts, including the bilateral projections of the CC, indicative of white matter micro- and macrostructural degradation with age. More importantly, mediation analyses demonstrated that age-related variations in the combined (fiber density and cross-section) metric of the genu, but not splenium, of the CC contributed to the observed age-related differences in bimanual coordination performance. These findings highlight the contribution of variations in interhemispheric communication between prefrontal (non-motor) cortices to age-related differences in motor performance.


Asunto(s)
Envejecimiento/patología , Envejecimiento/fisiología , Cuerpo Calloso/patología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Adulto , Anciano , Brazo/fisiología , Cuerpo Calloso/diagnóstico por imagen , Estudios Transversales , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Hum Brain Mapp ; 41(18): 5187-5198, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32840936

RESUMEN

Functional magnetic resonance imaging studies have documented the resting human brain to be functionally organized in multiple large-scale networks, called resting-state networks (RSNs). Other brain imaging techniques, such as electroencephalography (EEG) and magnetoencephalography (MEG), have been used for investigating the electrophysiological basis of RSNs. To date, it is largely unclear how neural oscillations measured with EEG and MEG are related to functional connectivity in the resting state. In addition, it remains to be elucidated whether and how the observed neural oscillations are related to the spatial distribution of the network nodes over the cortex. To address these questions, we examined frequency-dependent functional connectivity between the main nodes of several RSNs, spanning large part of the cortex. We estimated connectivity using band-limited power correlations from high-density EEG data collected in healthy participants. We observed that functional interactions within RSNs are characterized by a specific combination of neuronal oscillations in the alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-80 Hz) bands, which highly depend on the position of the network nodes. This finding may contribute to a better understanding of the mechanisms through which neural oscillations support functional connectivity in the brain.


Asunto(s)
Ritmo alfa/fisiología , Corteza Cerebral/fisiología , Conectoma/métodos , Red en Modo Predeterminado/fisiología , Electroencefalografía/métodos , Ritmo Gamma/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Red en Modo Predeterminado/diagnóstico por imagen , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Descanso , Adulto Joven
17.
Hum Brain Mapp ; 41(1): 256-269, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31532053

RESUMEN

Resting-state functional magnetic resonance imaging (rs-fMRI) has the potential to shed light on the pathophysiological mechanisms of Huntington's disease (HD), paving the way to new therapeutic interventions. A systematic literature review was conducted in three online databases according to PRISMA guidelines, using keywords for HD, functional connectivity, and rs-fMRI. We included studies investigating connectivity in presymptomatic (pre-HD) and manifest HD gene carriers compared to healthy controls, implementing seed-based connectivity, independent component analysis, regional property, and graph analysis approaches. Visual network showed reduced connectivity in manifest HD, while network/areas underpinning motor functions were consistently altered in both manifest HD and pre-HD, showing disease stage-dependent changes. Cognitive networks underlying executive and attentional functions showed divergent anterior-posterior alterations, possibly reflecting compensatory mechanisms. The involvement of these networks in pre-HD is still unclear. In conclusion, aberrant connectivity of the sensory-motor network is observed in the early stage of HD while, as pathology spreads, other networks might be affected, such as the visual and executive/attentional networks. Moreover, sensory-motor and executive networks exhibit hyper- and hypo-connectivity patterns following different spatiotemporal trajectories. These findings could potentially help to implement future huntingtin-lowering interventions.


Asunto(s)
Corteza Cerebral/fisiopatología , Conectoma , Enfermedad de Huntington/fisiopatología , Red Nerviosa/fisiopatología , Síntomas Prodrómicos , Corteza Cerebral/diagnóstico por imagen , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen
18.
Hum Brain Mapp ; 41(13): 3680-3695, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32583940

RESUMEN

Previous research in young adults has demonstrated that both motor learning and transcranial direct current stimulation (tDCS) trigger decreases in the levels of gamma-aminobutyric acid (GABA) in the sensorimotor cortex, and these decreases are linked to greater learning. Less is known about the role of GABA in motor learning in healthy older adults, a knowledge gap that is surprising given the established aging-related reductions in sensorimotor GABA. Here, we examined the effects of motor learning and subsequent tDCS on sensorimotor GABA levels and resting-state functional connectivity in the brains of healthy older participants. Thirty-six older men and women completed a motor sequence learning task before receiving anodal or sham tDCS to the sensorimotor cortex. GABA-edited magnetic resonance spectroscopy of the sensorimotor cortex and resting-state (RS) functional magnetic resonance imaging data were acquired before and after learning/stimulation. At the group level, neither learning nor anodal tDCS significantly modulated GABA levels or RS connectivity among task-relevant regions. However, changes in GABA levels from the baseline to post-learning session were significantly related to motor learning magnitude, age, and baseline GABA. Moreover, the change in functional connectivity between task-relevant regions, including bilateral motor cortices, was correlated with baseline GABA levels. These data collectively indicate that motor learning-related decreases in sensorimotor GABA levels and increases in functional connectivity are limited to those older adults with higher baseline GABA levels and who learn the most. Post-learning tDCS exerted no influence on GABA levels, functional connectivity or the relationships among these variables in older adults.


Asunto(s)
Envejecimiento/fisiología , Conectoma , Espectroscopía de Resonancia Magnética , Actividad Motora/fisiología , Plasticidad Neuronal/fisiología , Corteza Sensoriomotora/fisiología , Aprendizaje Seriado/fisiología , Estimulación Transcraneal de Corriente Directa , Ácido gamma-Aminobutírico/metabolismo , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Corteza Sensoriomotora/diagnóstico por imagen , Corteza Sensoriomotora/metabolismo
19.
Cereb Cortex ; 29(11): 4646-4653, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30668705

RESUMEN

Functional connectivity is defined as the statistical dependency of neurophysiological activity between 2 separate brain areas. To investigate the biological characteristics of resting-state functional connectivity (rsFC)-and in particular the significance of connection-wise variation in time-series correlations-rsFC was compared with strychnine-based connectivity measured in the macaque. Strychnine neuronography is a historical technique that induces activity in cortical areas through means of local administration of the substance strychnine. Strychnine causes local disinhibition through GABA suppression and leads to subsequent activation of functional pathways. Multiple resting-state fMRI recordings were acquired in 4 macaques (examining in total 299 imaging runs) from which a group-averaged rsFC matrix was constructed. rsFC was observed to be higher (P < 0.0001) between region-pairs with a strychnine-based connection as compared with region-pairs with no strychnine-based connection present. In particular, higher resting-state connectivity was observed in connections that were relatively stronger (weak < moderate < strong; P < 0.01) and in connections that were bidirectional (P < 0.0001) instead of unidirectional in strychnine-based connectivity. Our results imply that the level of correlation between brain areas as extracted from resting-state fMRI relates to the strength of underlying interregional functional pathways.


Asunto(s)
Encéfalo/fisiología , Animales , Encéfalo/efectos de los fármacos , Mapeo Encefálico , Femenino , Antagonistas del GABA/administración & dosificación , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Estricnina/administración & dosificación
20.
Neuroimage ; 200: 474-481, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31280013

RESUMEN

Electrophysiological studies revealed that different neuronal oscillations, among which the alpha (8-13 Hz) rhythm in particular, but also the beta (13-30 Hz) and gamma (30-80 Hz) rhythms, are modulated during rest in the default mode network (DMN). Little is known, however, about the role of these rhythms in supporting DMN connectivity. Biophysical studies suggest that lower and higher frequencies mediate long- and short-range connectivity, respectively. Accordingly, we hypothesized that interactions between all DMN areas are supported by the alpha rhythm, and that the connectivity between specific DMN areas is established through other frequencies, mainly in the beta and/or gamma bands. To test this hypothesis, we used high-density electroencefalographic data collected in 19 healthy volunteers at rest. We analyzed frequency-dependent functional interactions between four main DMN nodes in a broad (1-80 Hz) frequency range. In line with our hypothesis, we found that the frequency-dependent connectivity profile between pairs of DMN nodes had a peak at 9-11 Hz. Also, the connectivity profile showed other peaks at higher frequencies, which depended on the specific connection. Overall, our findings suggest that frequency-dependent connectivity analysis may be a powerful tool to better understand how different neuronal oscillations support connectivity within and between brain networks.


Asunto(s)
Ondas Encefálicas/fisiología , Corteza Cerebral/fisiología , Conectoma/métodos , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/fisiología , Adulto , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA