RESUMEN
Amyotrophic Lateral Sclerosis (ALS) is a progressive neuromuscular disease for which there is no cure. We have previously developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of disease pathophysiology. Using this model, we designed a drug screening strategy based on the pupal lethality phenotype induced by TDP-43 when expressed in motor neurons. In screening 1200 FDA-approved compounds, we identified the PPARγ agonist pioglitazone as neuroprotective in Drosophila. Here, we show that pioglitazone can rescue TDP-43-dependent locomotor dysfunction in motor neurons and glia but not in muscles. Testing additional models of ALS, we find that pioglitazone is also neuroprotective when FUS, but not SOD1, is expressed in motor neurons. Interestingly, survival analyses of TDP or FUS models show no increase in lifespan, which is consistent with recent clinical trials. Using a pharmacogenetic approach, we show that the predicted Drosophila PPARγ homologs, E75 and E78, are in vivo targets of pioglitazone. Finally, using a global metabolomic approach, we identify a set of metabolites that pioglitazone can restore in the context of TDP-43 expression in motor neurons. Taken together, our data provide evidence that modulating PPARγ activity, although not effective at improving lifespan, provides a molecular target for mitigating locomotor dysfunction in TDP-43 and FUS but not SOD1 models of ALS in Drosophila. Furthermore, our data also identify several 'biomarkers' of the disease that may be useful in developing therapeutics and in future clinical trials.
Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , PPAR gamma/agonistas , Tiazolidinedionas/uso terapéutico , Esclerosis Amiotrófica Lateral/genética , Animales , Proteínas de Unión al ADN/agonistas , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Drosophila/efectos de los fármacos , Drosophila/genética , Proteínas de Drosophila/agonistas , Proteínas de Drosophila/genética , Humanos , Neuronas Motoras/efectos de los fármacos , Neuroglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Pioglitazona , Proteína FUS de Unión a ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Tiazolidinedionas/farmacología , Factores de Transcripción/agonistas , Factores de Transcripción/genéticaRESUMEN
How astrocytes regulate neuronal circuits is a fundamental, unsolved question in neurobiology. Nevertheless, few studies have explored the rules that govern when astrocytes respond to different neurotransmitters in vivo and how they affect downstream circuit modulation. Here, we report an unexpected mechanism in Drosophila by which G-protein coupled adrenergic signaling in astrocytes can control, or "gate," their ability to respond to other neurotransmitters. Further, we show that manipulating this pathway potently regulates neuronal circuit activity and animal behavior. Finally, we demonstrate that this gating mechanism is conserved in mammalian astrocytes, arguing it is an ancient feature of astrocyte circuit function. Our work establishes a new mechanism by which astrocytes dynamically respond to and modulate neuronal activity in different brain regions and in different behavioral states.
RESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal, complex neurodegenerative disorder that causes selective degeneration of motor neurons. ALS patients exhibit symptoms consistent with altered cellular energetics such as hypermetabolism, weight loss, dyslipidemia, insulin resistance, and altered glucose tolerance. Although evidence supports metabolic changes in ALS patients, metabolic alterations at a cellular level remain poorly understood. Here, we used a Drosophila model of ALS based on TDP-43 expression in motor neurons that recapitulates hallmark features of motor neuron disease including TDP-43 aggregation, locomotor dysfunction, and reduced lifespan. To gain insights into metabolic changes caused by TDP-43, we performed global metabolomic profiling in larvae expressing TDP-43 (WT or ALS associated mutant variant, G298S) and identified significant alterations in several metabolic pathways. Here, we report alterations in multiple metabolic pathways and highlight upregulation of Tricarboxylic acid (TCA) cycle metabolites and defects in neurotransmitter levels. We also show that modulating TCA cycle flux either genetically or by dietary intervention mitigates TDP-43-dependent locomotor defects. In addition, dopamine levels are significantly reduced in the context of TDP-43G298S, and we find that treatment with pramipexole, a dopamine agonist, improves locomotor function in vivo in Drosophila models of TDP-43 proteinopathy.
RESUMEN
Amyotrophic lateral sclerosis is a neurodegenerative disorder causing progressive muscle weakness and death within 2-5 years following diagnosis. Clinical manifestations include weight loss, dyslipidemia, and hypermetabolism; however, it remains unclear how these relate to motor neuron degeneration. Using a Drosophila model of TDP-43 proteinopathy that recapitulates several features of ALS including cytoplasmic inclusions, locomotor dysfunction, and reduced lifespan, we recently identified broad ranging metabolic deficits. Among these, glycolysis was found to be upregulated and genetic interaction experiments provided evidence for a compensatory neuroprotective mechanism. Indeed, despite upregulation of phosphofructokinase, the rate limiting enzyme in glycolysis, an increase in glycolysis using dietary and genetic manipulations was shown to mitigate locomotor dysfunction and increased lifespan in fly models of TDP-43 proteinopathy. To further investigate the effect on TDP-43 proteinopathy on glycolytic flux in motor neurons, a previously reported genetically encoded, FRET-based sensor, FLII12Pglu-700µÎ´6, was used. This sensor is comprised of a bacterial glucose-sensing domain and cyan and yellow fluorescent proteins as the FRET pair. Upon glucose binding, the sensor undergoes a conformational change allowing FRET to occur. Using FLII12Pglu-700µÎ´6, glucose uptake was found to be significantly increased in motor neurons expressing TDP-43G298S, an ALS causing variant. Here, we show how to measure glucose uptake, ex vivo, in larval ventral nerve cord preparations expressing the glucose sensor FLII12Pglu-700µÎ´6 in the context of TDP-43 proteinopathy. This approach can be used to measure glucose uptake and assess glycolytic flux in different cell types or in the context of various mutations causing ALS and related neurodegenerative disorders.
Asunto(s)
Esclerosis Amiotrófica Lateral , Proteinopatías TDP-43 , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Drosophila , GlucosaRESUMEN
Amyotrophic Lateral Sclerosis (ALS), is a fatal neurodegenerative disorder, with TDP-43 inclusions as a major pathological hallmark. Using a Drosophila model of TDP-43 proteinopathy we found significant alterations in glucose metabolism including increased pyruvate, suggesting that modulating glycolysis may be neuroprotective. Indeed, a high sugar diet improves locomotor and lifespan defects caused by TDP-43 proteinopathy in motor neurons or glia, but not muscle, suggesting that metabolic dysregulation occurs in the nervous system. Overexpressing human glucose transporter GLUT-3 in motor neurons mitigates TDP-43 dependent defects in synaptic vesicle recycling and improves locomotion. Furthermore, PFK mRNA, a key indicator of glycolysis, is upregulated in flies and patient derived iPSC motor neurons with TDP-43 pathology. Surprisingly, PFK overexpression rescues TDP-43 induced locomotor deficits. These findings from multiple ALS models show that mechanistically, glycolysis is upregulated in degenerating motor neurons as a compensatory mechanism and suggest that increased glucose availability is protective.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Modelos Animales de Enfermedad , Glucosa/metabolismo , Glucólisis , Neuronas Motoras/metabolismo , Regulación hacia Arriba , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Humanos , Neuroprotección/genética , Ácido Pirúvico/metabolismo , Activación TranscripcionalRESUMEN
ALS patients exhibit dyslipidemia, hypermetabolism and weight loss; in addition, cellular energetics deficits have been detected prior to denervation. Although evidence that metabolism is altered in ALS is compelling, the mechanisms underlying metabolic dysregulation and the contribution of altered metabolic pathways to disease remain poorly understood. Here we use a Drosophila model of ALS based on TDP-43 that recapitulates hallmark features of the disease including locomotor dysfunction and reduced lifespan. We performed a global, unbiased metabolomic profiling of larvae expressing TDP-43 (wild-type, TDPWT or disease-associated mutant, TDPG298S) and identified several lipid metabolism associated alterations. Among these, we found a significant increase in carnitine conjugated long-chain fatty acids and a significant decrease in carnitine, acetyl-carnitine and beta-hydroxybutyrate, a ketone precursor. Taken together these data suggest a deficit in the function of the carnitine shuttle and reduced lipid beta oxidation. To test this possibility we used a combined genetic and dietary approach in Drosophila. Our findings indicate that components of the carnitine shuttle are misexpressed in the context of TDP-43 proteinopathy and that genetic modulation of CPT1 or CPT2 expression, two core components of the carnitine shuttle, mitigates TDP-43 dependent locomotor dysfunction, in a variant dependent manner. In addition, feeding medium-chain fatty acids or beta-hydroxybutyrate improves locomotor function, consistent with the notion that bypassing the carnitine shuttle deficit is neuroprotective. Taken together, our findings highlight the potential contribution of the carnitine shuttle and lipid beta oxidation in ALS and suggest strategies for therapeutic intervention based on restoring lipid metabolism in motor neurons.
RESUMEN
PURPOSE OF REVIEW: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease for which there is no cure and treatments are at best palliative. Several genes have been linked to ALS, which highlight defects in multiple cellular processes including RNA processing, proteostasis and metabolism. Clinical observations have identified glucose intolerance and dyslipidemia as key features of ALS however the causes of these metabolic alterations remain elusive. RECENT FINDINGS: Recent studies reveal that motor neurons and muscle cells may undergo cell type specific metabolic changes that lead to utilization of alternate fuels. For example, ALS patients' muscles exhibit reduced glycolysis and increased reliance on fatty acids. In contrast, ALS motor neurons contain damaged mitochondria and exhibit impaired lipid beta oxidation, potentially leading to increased glycolysis as a compensatory mechanism. SUMMARY: These findings highlight the complexities of metabolic alterations in ALS and provide new opportunities for designing therapeutic strategies based on restoring cellular energetics.