Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 4(4): 7861-7865, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31179412

RESUMEN

Natural cellulose-based materials (CBMs) have considerable potential as strong and lightweight materials for advanced structural applications. Herein, we demonstrate a mechanically strong yet lightweight CBM with highly aligned wood fibers by the coupling pulping of wood blocks with mechanical pressing, which exhibits a tensile strength of 719.0 ± 30.2 MPa, an elastic modulus of 19.0 ± 1.4 GPa, and a density of 1.32 g/cm3. The extraordinary mechanical properties of the CBM are mainly ascribed to the good orientation of wood fibers in the longitudinal direction as well as the dramatically increased hydrogen bonds among adjacent fiber cells due to the lignin removal and mechanical pressing. More significantly, the resulting sheet-like anisotropic CBMs can be used to fabricate anisotropic and isotropic bulk CBMs with maximum tensile strengths of 561 and 330 MPa, respectively, through a facile and scalable layer-by-layer stacking method. This work exploits the mechanical potential of cellulose and the large-scale production of anisotropic and isotropic bulk CBMs with extraordinary mechanical performance and may open up a range of novel applications to CBMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA